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Abstract—In recent years we have observed great advances
in parallel platforms and the exponential growth of datasets in
several domains. Undoubtedly, parallel programming is crucial to
harness the performance potential of such platforms and to cope
with very large datasets. However, quite often one has to deal with
legacy software systems that may use third-party frameworks,
libraries, or tools, and that may be executed in different multicore
architectures. Managing different software configurations and
adapt them for different needs is an arduous task, particularly
when it has to be carried out by scientists or when dealing with
irregular applications.

In this paper, we present an approach to abstract legacy
software systems using workflow modeling tools. We show
how a basic pipeline is modeled and adapted—using model
transformations—to different application scenarios, either to
obtain better performance, or more reliable results. Moreover,
we explain how the system we provide to support the approach
is easily extensible to accommodate new tools and algorithms.

We show how a pipeline of three irregular applications—
all from phylogenetics—is mapped to parallel implementations.
Our studies show that the derived programs neither downgrade
performance nor sacrifice scalability, even in the presence of a
set of asymmetric tasks and when using third-party tools.

I. INTRODUCTION

In recent years we have observed great advances in parallel
platforms and the exponential growth of datasets in several
domains (e.g., Physics, Medicine, Chemistry, and Biology).
On one hand, we have entered the so-called multicore era [1].
On the other hand, Next-Generation Sequencing (NGS) plat-
forms [2], the Large Hadron Collider accelerator [3], among
other platforms, are producing data at an unprecedented scale
and pace, which has become known as the Big Data problem.

Phylogenetics – the study of evolutionary relationships
among a set of taxa – is an extremely important and challeng-
ing branch of research in Computational Biology. Nowadays,
phylogenies are used in a daily basis and on a wide variety
of fields: in linguistics, in forensics, in cancer research and
treatment, in drugs research and design, among others [4].
However, due to the aforementioned advances in NGS, phylo-
genetics also suffers from the Big Data problem. Moreover, the
problem is aggravated as the tree search space has a factorial
growth, thus it becomes intractable even in the presence of a
small set of taxa, as shown in Table I.

Usually, heuristics are used in order to reduce the tree search
space. Nevertheless, depending on the size of the dataset, a
phylogenetic analysis becomes a daunting task when using
a strict sequential computational approach [5], [6]. Thus, to
cope with very large datasets, many phylogenetic analyses
would greatly benefit from the use of parallel programming

TABLE I
NUMBER OF UNROOTED BINARY TREES.

#Taxa #Trees
n (2n− 5)!!

2 1
3 1
4 3
5 15

10 2027025
20 221643095476700000000

(to harness the performance potential of parallel platforms and,
therefore, to obtain results as soon as possible).

The alignment of DNA sequences and the process of
getting a phylogenetic tree from an alignment are examples
of phylogenetic analyses that benefit from the use of parallel
computing and, possibly, distributed computing. Fortunately,
state of the art tools such as MAFFT [7] and RAxML [8]
already provide support for multithreading. Since RAxML
provides support for MPI [9], it is also possible to conduct
analyses in distributed memory systems. Nevertheless, these
tools often do not contemplate different usage scenarios re-
quired by scientists, such as: (i) out of the box support for
batch processing; (ii) change parallelization strategies either
by incorporating new algorithms or by composing existent
ones; and (iii) synthesis and reconfiguration of a pipeline of
phylogenetic programs (Figure 1 shows a possible pipeline
that can be built based on existent phylogenetic programs).

Different application scenarios may require different im-
plementations. For example, the most efficient way to handle
one input or a batch of inputs is usually not same. Moreover,
the characteristics of the different inputs must be taken into
account. The hardware used also affects the design of im-
plementation, so that it can make an optimal use of features
such as multiple cores, CPU caches, network, etc. That is,
a pipeline can usually be optimized for different inputs, or
different target hardware platforms. However, scientists often
do not have the required technical knowledge to perform
this sort of adaptation. The approach we propose leverages
from model transformations, it helps scientists dealing with
the aforementioned issues and allows them to abstract from
specific details that do not belong to their knowledge domain.
It is based on a representation of the application domain that
allows the definition of different implementations of common
operations, optimized for different needs, which a scientist can
choose and compose while synthesizing an optimized imple-
mentation for its use case. This approach also allows scientists
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Fig. 1. Pipeline to get a supertree from a set of N multiple unaligned DNA sequences (MUDS) files (MADS means multiple aligned DNA sequences).

to easily switch the external tools that are used to implement
each abstract operation of the pipeline. Moreover, the domain
representation can be easily extended to accommodate new
operations or algorithms.

In summary, the contributions of this paper are:
• abstract legacy software pipelines using workflow mod-

eling tools;
• show how a basic pipeline is incrementally adapted (using

model transformations) to different application scenarios,
either to obtain better performance, or more reliable
results; and

• explain how the approach we propose is easily extensible
to accommodate new tools and algorithms that implement
the different phases of the pipeline.

As proof of concept, we used our approach to derive parallel
implementations of the pipeline shown in Figure 1, which
comprises three (legacy) irregular programs, all from phy-
logenetics (i.e., real world problems). Our studies show that
our approach neither downgrades performance nor sacrifices
scalability, even in the presence of asymmetric tasks and
when using third-party tools. Moreover, it eases the task of
specifying and reconfiguring the pipeline.

II. OVERVIEW

Often, programmers have to deal with legacy software
systems which may use third-party frameworks, libraries, or
tools. Some examples are: in Computer Graphics, Direct3D,
and OpenGL; in Computational Chemistry, GROMACS, and
NAMD; in Dense Linear Algebra, BLAS, and LAPACK; and
so forth. Computational Biology is no different.

In phylogenetics, it is quite common to use a phylogenetic
tree to represent the relationships that exist among a set of
taxa. The taxa can be formed by a set of multiple unaligned
DNA sequences (MUDS). The alignment of MUDS can be
performed by a multiple sequence alignment (MSA) tool—
in this study we used MAFFT—which output is a set of
multiple aligned DNA sequences (MADS), (see First Phase of
Figure 1). Then, an inference analysis can be performed over
each of those MADS files—in this study we used RAxML—
which output is a tree (see Second Phase of Figure 1). Finally,
the set of trees—known as input trees or source trees—
becomes the input dataset to a supertree method—in this study
we used SuperFine [5]—which is used to estimate a supertree
on the entire set of taxa (see Third Phase of Figure 1).

The different tools used in the process we described are
not integrated, thus the user (e.g., a scientist) has to call
each tool, often for several inputs files to produce the desired
result. In order to automate this workflow, scripts may be
used. More sophisticated solutions—workflow systems—have

emerged in the past years [10], in order to simplify the task of
automating pipelines (and other types of workflows). In this
work we explore the use of ReFlO [11] as a tool to allow
the specification of pipelines by graphically dragging and
connecting components. Moreover, ReFlO provides the ability
to encode domain knowledge that can be used to incrementally
derive optimized implementations from abstract specifications,
which we will leverage to produce a system that gives users
the flexibility to adapt applications to their use cases, namely
to handle the scheduling and parallelization of multiple inputs.

III. SYNTHESIS AND RECONFIGURATION OF PIPELINES

The approach and system we propose are based on the
idea of encoding the different operations used in a certain
domain (in this case phylogenetics). Those operations are
viewed as reusable components, which can be orchestrated to
specify a program (its workflow). Moreover, associated with
the operations we have different implementations, optimized
for specific hardware platforms, or for inputs with certain
characteristics. The different implementations for an operation
will allow end users to adapt a workflow for its specific use
case. Those associations between operations and implementa-
tions are called rewrite rules in the ReFlO framework [11],
and they comprise the model of the domain. There are two
types of implementations: primitives associate a direct code
implementation to an operation (e.g., calling an external tool),
whereas algorithms specify an implementation of an operation
as a composition of operations. It is common to find recursive
algorithms that are specified in terms of the operation they im-
plement (e.g., a divide and conquer algorithm that divides the
input, by recursively calling the operation being implemented,
and then merges the results). As we will see later, this is a
very useful property of certain algorithms, which allows us
to compose different algorithms for the same operation and
incrementally derive more complex implementations from a
small set of components and rewrite rules.

Given an abstract workflow specification, composed of the
operations previously modeled, a user can use the rewrite
rules to incrementally refine [12] the specification (choosing
the most appropriate implementations for its use case), and
synthesize an optimized implementation that fits its needs.

In the following we illustrate how we use the proposed
approach to interactively model the workflow for the pipeline
described in Section II, and synthesize different implementa-
tions for it by incrementally refine its abstract specification.

A. Abstract Pipeline’s Workflow

The abstract pipeline we use was described in Section II. It
comprises three programs, each one abstracted as an operation.
Thus, the base operations we have are MSA, Inference, and



Supertree. The input to these operations is a stream of file
paths (representing the files to be processed). Those operations
have other additional parameters that specify custom options
for each operation.

These are examples of operations we encoded in ReFlO
(other operations will be described later). Moreover, we also
created: (i) rewrite rules to define possible implementations
for the different operations we have, (ii) the source code for
each primitive implementation of an operation, and (iii) a
simple code generator. These artifacts, together with ReFlO,
provide the tool support for the approach we propose, which
allows a user to graphically specify workflows, and interac-
tively map the specification to more efficient code for its use
case.

The first step in the approach we propose is to specify the
workflow’s model. This is done creating an architecture model
file in ReFlO, then creating an architecture box, and finally
adding to it the operations and the connectors that express the
desired workflow. In particular, for the pipeline we previously
described, we would create the model depicted in Figure 2,
which expresses the workflow of a pipeline that processes a
given stream of file paths, producing intermediary results, and
outputs the resulting file at the end.

Fig. 2. Abstract pipeline’s workflow modeled in ReFlO. Nubs attached to
boxes are their input (IF) and output (OF) ports.

A model like this is all a user needs to obtain the code
to execute the pipeline. Even though this is a platform-
independent model (PIM)—as the operations present in the
workflow are abstract (i.e., they do not force a particular
implementation)—, we have associated to each operation a
default (primitive) implementation, which is automatically
chosen when generating code for the workflow.

The code generator walks through the workflow and gener-
ates Java code for each connector and box. Each connector
is translated to an object of type BlockingQueue<T>,
where T is given by the data type of the ports that uses
the connector. By using blocking queues, when running the
program, the thread running a box will automatically block
while the queue is empty (i.e., when there are no elements to
be processed). Each box is implemented by a class (it should
extend class Thread, have a constructor that receives the
connector objects and a Config object with custom options
loaded from a file, and have its behavior defined in its run
method). The first connector is filled with the values given as
arguments to the program. Thus, when generating the code we
just have to instantiate a class for each box (providing them
the right connector objects), and add them to a list of threads,
which are started at the end. As an example, Listing 1 provides
an excerpt of the code generated for the workflow show in
Figure 2.

// array containing threads for different boxes
List<Thread> threads = new ArrayList<>();
// connectors variables
BlockingQueue<String> q0 = new LinkedBlockingQueue<>();
BlockingQueue<String> q1 = new LinkedBlockingQueue<>();
BlockingQueue<String> q2 = new LinkedBlockingQueue<>();
BlockingQueue<String> q3 = new LinkedBlockingQueue<>();
Config confis = Config.load();
// fill first connector with program arguments
for(String arg : args) q0.put(arg);
q0.put(""); // empty string means no more args
// create a thread to run each box
threads.add(new MSA(q0, q1, configs));
threads.add(new Inference(q1, q2, configs));
threads.add(new Supertree(q2, q3, configs));
threads.forEach(Thread::start); // start threads, and
threads.forEach(Thread::join); // wait for their finish

Listing 1. An excerpt of code generated for workflow from Figure 2.

public class Inference extends Thread {
private BlockingQueue<String> IF;
private BlockingQueue<String> OF;
private Config configs;

public Inference(BlockingQueue<String> IF,
BlockingQueue<String> OF, Config configs) {

this.IF = IF;
this.OF = OF;
this.configs = configs;

}

public void run() {
// take values from input queues,
// process each value, and
// write results to output queues

}
}

Listing 2. Basic structure for a box’s code implementation.

In Listing 2, we show the structure of a class implementing
a box (in this case, the Inference box). A constructor
receives the objects (queues) associated to each port, and stores
them in proper attributes of the class. The run method takes
values from the input queue(s), process each of those values,
and write results into the output queue(s). Typically the users
reuse components already implemented. However, in case he
wants to extend the system to support new operations and
implementations, he can graphically add new rewrite rules to
the system specifying those new components. He will also
have to provide the code for new primitive implementations.
Nevertheless, our system automatically generates a class tem-
plate similar to the one presented in Listing 2, where the user
only has to fill in the code that reads and processes inputs
(usually calling an external tool).

B. Parallelizing the Pipeline
The previous workflow (see Figure 2) uses the default

implementations for each operation, which result in sequential
code that essentially calls some external tools and processes
one file at a time. However, we can easily derive different
implementations by refining the initial workflow presented in
Figure 2. We can, for example, refine the Inference oper-
ation with an implementation that uses FastTree [13] instead
of RAxML (RAxML is the inference tool used by default)
for the tree inference phase (see Second Phase in Figure 1),
which is faster but provides less options than RAxML. This
is done selecting the Inference box (Figure 2), choosing



the refine transformation from the context menu, and selecting
inf_ft from the list of implementations shown. ReFlO will
automatically generate the workflow depicted in Figure 3,
where the Inference operation was replaced with the
inf_ft primitive implementation.

Fig. 3. Workflow after refining the Inference operation with its inf_ft
primitive implementation.

More important than being able to switch primitive imple-
mentations is the ability to choose—and compose—algorithm
implementations. For example, suppose the user has a multi-
core machine. He can run his workflows faster by using multi-
ple threads to run an operation. Considering that the primitive
implementations rely on tools such as MAFFT, FastTree,
RAxML, etc., which have multithreading capabilities, this new
parallelization step can be obtained by simply activating this
option. Again, this alternate behavior will be obtained refining
the initial workflow (Figure 2).

The Inference operation has two steps. First, given a file,
a task that defines what to do with the file is created. This task
also contains properties about the file, such as its size, among
others. Then, the task is sent to a generic executor component,
that runs it and outputs its resulting file. In its simplest form,
the executor just runs tasks in a first come, first served basis.
To allow the Inference operation to be parallelized, we
start by refining the workflow to expose these two steps, as
shown in Figure 4.

Fig. 4. Workflow after exposing the two steps of applying the Inference
operation to a file.

Parallelization itself can now be obtained by refining the
Executor operation with its multithreaded implementation,
to explore intra-task parallelism. This refinement replaces
the Executor with the composition MTParam+Executor.
In practice, we just added a box before the Executor
to determine the optimal number of threads that should be
used when processing each task, and to set the proper task’s
property, as shown in Figure 5.

Fig. 5. Workflow after adding multithreading support to the Inference
operation.

Multithreading offers limited scalability (in the case of
FastTree the limit is 3 threads, but regardless of the tool, from
a certain point, performance downgrades as more threads are

added). This problem can be lowered by also processing more
than one file in parallel (in case the operation can process each
file individually). Thus, for example, the Executor operation
can be refined again to also support a fork-join parallelization
strategy (enabling support for inter-task parallelism). Such im-
plementation creates N parallel executors to which a scheduler
operation sends tasks to be processed, and that are merged at
the end, as shown in Figure 6. The Merge operation sends
feedback information—through FB port—about finished tasks
to scheduler (MPSchd) so that it can optimize load balancing
in the presence of irregular tasks, whose execution time is hard
or impractical to estimate.

This workflow was obtained simply by applying another
refinement to the Executor operation, that is, composing
two different refinements for this operation. In this way, we
obtained support for intra- and inter-task parallelism at the
same time (which we call hybrid parallelism). Besides the
two parallel workflows described, the user could have also
refined the initial workflow (Figure 2) to support inter-task
parallelism only. Thus, by composing the multithreading and
multiprocess transformations in different ways, he can obtain
different combinations of parallel strategies. This happens as
the algorithms used are recursive. Moreover, at the end he
can also choose the external tool to use, or change its list of
arguments in order to be able to perform alternative analyses,
by refining the ITask operation.

There are additional levels of parallelization we can support.
For example, we could add support for distributed memory
parallelization, simply starting by refining the Executor
with an algorithm similar to the one used to distribute tasks
among processes, but that would distribute different sets of
tasks among different machines. To make such an algorithm
available, all that is needed is to incorporate new adequate
rewrite rules associating the algorithm with the Executor
operation, and add implementations for any new operation
required by the algorithm.

Similar algorithms can be used to parallelize the MSA
operation. In fact, only the first refinement would change, to
expose an operation that creates alignment tasks (instead of
inference tasks), which are then sent to the Executor. As we
use a generic Executor component that handles task objects
(which abstract the specificities of each phase of the pipeline),
parallelization would be obtained with the same refinements
of Executor. Those new refinement steps would seamlessly
compose with the previously mentioned ones.

For the Supertree operation, we use SuperFine to es-
timate a supertree from the source trees—the output of the
previous operation of the pipeline—and, then, refine that same
supertree (i.e., try to resolve each polytomy—an internal node
that has a degree greater than 3—, as described in [5]).
Thus, SuperFine is used to refine the Supertree operation. This
refinement of the model comprises different steps, as shown
in Figure 7. First, we have SCMT_PMR operation, which:
(i) estimates a supertree, on the entire set of taxa of the
given source trees, by applying the strict consensus merger
(SCM) algorithm, and (ii) generates a matrix representation



Fig. 6. Workflow after adding multiprocess support to the Inference operation. N is a variable that expresses how many times boxes or ports are replicated.

file per each polytomy present in the estimated supertree.
Then, the Inference operation is called to process each
matrix representation file (i.e., to run an inference over the
matrix representation of each polytomy), producing a (new)
tree per each matrix representation file. Finally, the RPT oper-
ation replaces each polytomy with its counterpart (new) tree.
As parallelization refinement of the Supertree operation,
we use the parallelization described in [6], which basically
parallelizes the refinement phase of SuperFine (Inference
operation). Therefore, the parallelization of the Supertree
operation is done reusing the Inference refinements previ-
ously described.

Fig. 7. Workflow resulting from refining Supertree operation (due to space
limitations, we show only the boxes that replaced the Supertree operation).

IV. PERFORMANCE RESULTS

A. Experimental Design
We used in our evaluations one computing node at Stampede

[14] supercomputer. A Stampede’s computing node has two
eight-core Xeon E5-2680 (2.27 GHz) processors, is configured
with 32GB of memory, and runs CentOS release 6.5 (Final).
We used MAFFT 7.017, RAxML 8.0.22, and SuperFine.
MAFFT and RAxML were compiled using gcc 4.7.1 with
-O3 optimization flag. RAxML was compiled with support
for AVX, and with support for AVX and Pthreads. We used
Python 2.7.3 EPD 7.3-2 (64-bit) to run SuperFine. We used
JDK 1.8.0 20 (64-bit) to implement the system that allows to
synthesize and reconfigure pipelines. We used the following
biological data sets:

• Eukaryote, 22 files with multiple unaligned DNA se-
quences, studied originally in [15];

• CPL (Comprehensive Papilionoid Legumes), 2228 taxa,
39 source trees, studied originally in [16];

• Marsupials, 267 taxa, 158 source trees, studied originally
in [17];

• Placental Mammals, 116 taxa, 726 source trees, studied
originally in [18];

• Seabirds, 121 taxa, 7 source trees, studied originally in
[19]; and

• THPL (Temperate Herbaceous Papilionoid Legumes),
558 taxa, 19 source trees, studied originally in [20].

Finally, we took the average running time of six runs for
each program/thread-count/dataset combination.

B. MSA Operation
Figure 8 shows the achieved speedups of four MSA pro-

grams, each of those programs was synthesized using the

described system. Moreover, each of them corresponds to a
derivation for the MSA operation, that was described earlier and
depicted in Figure 2, and executed using as input the Eukaryote
dataset. The programs are: (i) a derivation that executes in
sequential mode (Seq); (ii) a derivation that exploits intra-task
parallelism (Intra-Par), which rely on the ability of MAFFT
to be executed using its support for multithreading (i.e., tasks
are executed one after the other, but each may be executed
with a number of threads that goes from one to the number
of cores); (iii) a derivation that exploits inter-task parallelism
(Inter-Par) (i.e., several task may be executed in parallel,
which means parallel calls to MAFFT); and (iv) a derivation
that exploits inter and intra-task parallelism (Hybrid-Par), that
is a composition of ii and iii.
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Fig. 8. Speedups of four MSA programs which input was the Eukaryote
dataset.

As shown in Figure 8, the Hybrid-Par derivation outper-
forms by far any other derivation and exhibits an efficiency
level of roughly 70%. On the contrary, Inter-Par and Intra-
Par derivations exhibit poor performance, yet they outperform
the Seq derivation, as expected. It is important to notice that
MAFFT by itself (see Intra-Par speedups in Figure 8) is
not able to cope efficiently with the Eukaryote dataset and,
therefore, with no other.

C. Inference Operation

We also synthesized four Inference programs, in the
same way that we did to evaluate the MSA operation (see
Section IV-B). For the sake of brevity, we decided to show
only—in Table II—results for the hybrid derivation (i.e.,
the Inference program that exploits inter and intra-task
parallelism).

In phylogenetics it is well known that, in general, inference
operations are more time-consuming with increasing number
of taxa, which is easily deduced from numbers shown in
Table I. Thus, it is expected that running an inference analysis
over an alignment file that has more species than another one
would take longer to perform. As well as what happens with
increasing number of species, the increasing number of sites—
the length of DNA sequence—also contributes to a more time-
consuming inference operation. These facts may be used to
establish a metric, although not perfect, that allows to quantify
the size of each task. We elide here any further discussion



TABLE II
AVERAGE RUNNING TIMES (ART, IN SECONDS) FOR THE HYBRID
DERIVATION OF INFERENCE OPERATION USING THE EUKARYOTE

DATASET (#T IS THE NUMBER OF THREADS USED TO PROCESS A TASK).

#Cores
Taxa 1 2 4 8 16

File #Species #Sites #T ART #T ART #T ART #T ART #T ART
12S Asco 1314 470 1 99.4 1 99.4 1 99.3 1 99.3 1 100.9
16S H 752 331 1 55.3 1 55.2 1 55.2 1 55.2 1 64.1
LSU P1 11580 238 1 786.1 1 787.2 1 786.2 1 787.8 1 844.6
LSU P10 1919 112 1 163.1 1 163.2 1 163.1 1 164.1 1 182.7
LSU P12 1723 180 1 77.7 1 77.5 1 77.6 1 77.6 1 82.2
LSU P13 1267 240 1 75.7 1 75.7 1 75.7 1 75.6 1 92.6
LSU P2 11700 274 1 1287.5 1 1285.2 1 1285.1 1 1287.6 1 1324.2
LSU P3 8357 121 1 678.1 1 679.8 1 676.3 1 682.3 1 708.1
LSU P4 6445 308 1 839.7 1 841.0 1 839.1 1 839.0 1 876.9
LSU P5 3579 115 1 159.8 1 160.2 1 159.5 1 160.0 1 174.7
LSU P7 2021 118 1 68.6 1 68.7 1 68.6 1 68.7 1 78.0
LSU P8 2017 145 1 102.1 1 101.9 1 102.0 1 101.9 1 111.4
LSU P9 1954 173 1 84.1 1 83.9 1 83.9 1 83.9 1 100.7
MAT K 11855 842 1 1669.4 1 1669.8 1 1668.3 1 1669.7 1 1763.8
NADH 4864 1169 1 909.7 1 909.1 1 908.9 1 908.0 1 958.7
RBCL 13043 1710 1 3087.8 1 3081.7 1 3111.9 2 2122.7 3 1645.2
SSU 1a 20462 488 1 3759.1 1 3758.5 1 3806.1 2 2996.2 4 2829.9
SSU 1b 20439 364 1 4849.8 1 4838.7 1 4891.9 2 3728.1 3 3154.8
SSU 3C 19599 172 1 1916.6 1 1916.1 1 1930.3 1 2028.1 1 2134.3
SSU 4a 19552 135 1 1238.3 1 1239.1 1 1240.0 1 1248.6 1 1368.0
SSU 4b 19336 250 1 2182.8 1 2183.9 1 2215.3 1 2289.1 2 1488.4
SSU 4X 19377 33 1 640.9 1 640.7 1 641.7 1 652.4 1 681.3

ART 24731.5 12370.2 6286.0 4053.7 3154.9

about this topic—how to measure the size of a task?—since it
is out of the scope of this paper. With the size of each task it is
possible to decide how many threads should be used to process
a task, which is achieved through the MTParam operation. The
multiprocessing scheduler—MPSchd—may revise the number
of threads to optimize it when there are other processes/tasks
running in parallel (see Section III-B). The number of threads
per task also depends on the number of cores.

As shown in Table II, with 8 cores some tasks are executed
with more than one thread, namely: RBCL, SSU 1a, and
SSU 1b. The attribution may evolve as long as the number
of cores increases. As it is possible to observe in all tasks
that were processed with more than one thread, there is no
evident pay-off of such attribution. Nevertheless, the exploita-
tion of intra-task parallelism also contributed to obtain smaller
running times with 8 and 16 cores. It still deserves to be
mentioned that the running time obtained when using 16 cores
is limited by the time that is required to process SSU 1b task.

TABLE III
SPEEDUPS FOR THE FOR THE HYBRID DERIVATION OF INFERENCE

OPERATION USING THE EUKARYOTE DATASET.

#Cores
1 2 4 8 16

Speedup 1.0 2.0 3.9 6.1 7.8

We now focus our attention to the speedups obtained with
the hybrid derivation, shown in Table III. The results show
increasing speedups as cores are added, even though the
efficiency starts to decrease from a certain number of cores
(somewhere between 4 and 8 cores). Efficiency will gradually
diminish due to the lack of pay-off while exploiting intra-
task parallelism. Solving this issue is not easy since, in this

case, we rely on the ability of RAxML to exploit intra-task
parallelism. All in all, these results corroborate that it is
possible to synthesize efficient pipelines with our system, even
when one has to rely on third-party tools.

D. Supertree Operation
We also synthesized four Supertree programs, in the

same way that we did to evaluate the MSA operation and the
Inference operation (see, respectively, Section IV-B and
Section IV-C). To evaluate the performance of Supertree
operation we decided to use not the Eukaryote dataset but the
CPL, the Marsupials, the Placental Mammals, the Seabirds,
and the THPL datasets. These datasets have very different
characteristics, as mentioned in Section IV-A, and, above all,
they are much smaller than Eukaryote dataset. Moreover, those
very different characteristics also applies to the set of poly-
tomies that each consensus tree—the estimated supertree—
has, as shown in Table IV. Thus, they are optimal to test
how well a program that was synthesized with our system
behaves with such datasets. In Figure 9, we show the results
for the sequential derivation (Seq), the intra derivation (Intra-
Par), inter derivation (Inter-Par), and the hybrid derivation
(Hybrid-Par).

TABLE IV
OVERVIEW OF THE POLYTOMIES OF EACH CONSENSUS TREE.

CPL Marsupials Pla. Mam. Seabirds THPL
# Polytomies 105 18 1 10 36

D
eg

re
e

Minimum 3 3 114 4 3
Maximum 531 199 114 12 94

Sum 1287 273 114 71 312
Mode 3 3 - 6 3

Median 4 4 114 6 - 7 4
Mean 12.3 15.2 114.0 7.1 8.7

The first point to notice from results shown in Figure 9
is that the program obtained from the hybrid derivation has,
in general, the best performance when compared with the
performance of each other. The second point to notice is
that the program obtained from the hybrid derivation exhibits
good scalability since its behavior does not suffer with very
different problem sizes. To behave well in a wide variety
of conditions is an extremely important fact that contributes
for the success of a program. The third point to notice is
that the program obtained from the hybrid derivation, which
simply reuses the refinements required for the intra and inter
derivations, has the ability to take the best of each derivation.
This fact is corroborated by the achieved results with datasets
that are so different one from another, as aforementioned (see
Section IV-A and Table IV). The CPL, the Marsupials, and
the Placental Mammals datasets have asymmetric sets of tasks.
Typically, these datasets have one very large polytomy which
takes much longer to process than any other of the same
dataset (i.e., this sort of polytomies dominate the running
time). This kind of datasets are more suited to exploit intra-
task parallelism with success. On the contrary, datasets like
the Seabirds and the THPL dataset, since there is more
equilibrium in their tasks, are more suited to exploit inter-
task parallelism with success. Since the program obtained from
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Fig. 9. Average running times of four Supertree programs using several biological datasets.

the hybrid derivation is prepared to exploit inter and intra-task
parallelism, it behaves well either in the presence of symmetric
or asymmetric sets of tasks.

We should also refer that the characteristics of the men-
tioned datasets as well the implementation of RAxML are re-
sponsible for some decrease in performance (see Figures 9(a),
9(d), and 9(e)). For instance, the Seabirds dataset has only
ten polytomies, each of those is very small and the respective
task requires less than a second to be computed. In the case of
CPL dataset the observed behavior is due to RAxML, which
is corroborated by the observed behavior of the Intra-Par
derivation (when running in Intra-Par mode the polytomies
are processed one after the other).

V. RELATED WORK

Workflow systems for scientific usage are gaining more
and more popularity nowadays. Well-known graphical systems
include SciRun [21], Kepler [22], Triana [23], VisTrails [24],
or Taverna [25]. Deelman et al. provide a survey compar-
ing different workflow systems [10]. Some of these systems
support workflow optimizations based on traditional compiler
techniques, however they offer limited support for user defined
transformations, namely to specify how abstract components
can be refined for specific usage scenarios. In our work we
relied on ReFlO [11], due to its support for transformations,
which adds to the ease of use of graphical tools the flexibility
needed to obtain efficient implementations.

We also provide an approach to incrementally parallelize ap-
plications through transformations. We follow ideas originally
advocated by knowledge-based software engineering [26],
and recently recovered by the Design by Transformation
approach [27], which promote the use of transformations to
map a specification to an efficient implementation. The ability
to switch components’ implementation was also explored by
the RISPP approach [28]. Other approaches promoting the
incremental addition of parallelism relied on Aspect-Oriented
Programming (e.g. [29], [30]). Systems such as SPIRAL [31] or
Build to Order BLAS [32] support the automatic generation of
efficient low-level kernel functions, where empirical search is
employed to choose the best implementation. However, they
require regular application domains, where performance can
be predicted, either using cost functions or empirical search,
which is not feasible in domains such as phylogenetics.

Algorithmic skeletons [33], which can express the structure
of common patterns used in parallel programming [34], [35],
have also been used to parallelize applications. A survey on
the use of algorithmic skeletons for parallel programming is

presented in [36]. These methodologies/frameworks raise the
level of abstraction, and remove parallelization concerns from
domain code. However, they have limited support for the
addition of domain-specific composition patterns (i.e., their
extensibility is limited). On the other hand, ReFlO is a system
designed to allow users to extend the set of rewrite rules that
can be used to refine workflows, providing users the ability to
add support for custom composition patterns.

VI. CONCLUSIONS AND FUTURE WORK

The use of computational tools to help scientists in their
research is a reality in science nowadays. However, scientists
often rely on multiple external computational tools, which
need to be orchestrated together, to solve their problems. This
task becomes harder as the complexity of the problems grow,
requiring more and more sophisticated solutions to obtain
results in a timely manner. The ability to reuse tools and
libraries is important to handle this problem, but it is equally
important to provide reusable strategies to reconfigure and
optimize generic specifications. In this paper, we have shown
that the ability for a system to synthesize—either through
refinement, composition, or both—and reconfigure a workflow
has many benefits regarding the specification and adaptation of
scientific pipelines, namely to support different parallelization
strategies. We followed an MDE approach, based on the
use of high-level models to specify workflows, and reusable
model transformations to map those models to efficient im-
plementations and to generate code. The approach we propose
allows users to shift the focus from the technological issues
of orchestrating multiple tools to the research problems they
have at hands by handling the composition of multiple tools
and the batch processing of files, and by mechanizing the
transformation of workflows to support parallelization and the
use of specific tools. Moreover, the system developed can
be easily extended to accommodate new algorithms, tools, or
parallelization strategies, for example, which can be shared and
reused among the users of the domain. That is, our approach
provides both performance and flexibility. It can be broadly
applied to other domains, not necessarily scientific ones.

We showed how the same parallel strategies are reused
multiple times with multiple programs in the same workflow.
Moreover, we showed the importance of recursive algorithms
to allow the generation of implementations using multiple
parallelization strategies by composing different combinations
of a small set of refinements. Thus, the proposed approach
and respective system are worth to be adopted, as corrob-
orated by the performance results that were achieved with



irregular applications and with a variety of datasets. Datasets
that generate asymmetric sets of tasks turn even harder the
exploitation of parallelism. Nonetheless, we have shown that
the proposed approach and respective system are capable to
cope with such datasets, in a transparent and efficient manner.
Moreover, we have shown that the underlying third-party tools
when used alone are not prepared to handle datasets—either
with symmetric or asymmetric sets of tasks—as well as our
approach and systems are.

We are currently developing support for MPI, in order to
enable the use of multiple machines, in this way increasing
the levels of parallelism supported, and coping with the
growth of datasets. Moreover, we are also planning to provide
optimization transformations to allow the execution of multiple
phases of the pipeline simultaneously (currently, operations
such as scheduling impose a barrier that requires the previous
phase to finish before the next can start). We are also enriching
the set of refinements we provide, in order to add support for
other features such as checkpointing, which is becoming more
important as we use more and more computational resources
that are feed with bigger and bigger sets of tasks (which
increase the probability of occurring failures).
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