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Parallel Programming by Transformation

Abstract

The development of efficient software requires the selection of algorithms and

optimizations tailored for each target hardware platform. Alternatively, perfor-

mance portability may be obtained through the use of optimized libraries. How-

ever, currently all the invaluable knowledge used to build optimized libraries

is lost during the development process, limiting its reuse by other developers

when implementing new operations or porting the software to a new hardware

platform.

To answer these challenges, we propose a model-driven approach and frame-

work to encode and systematize the domain knowledge used by experts when

building optimized libraries and program implementations. This knowledge is

encoded by relating the domain operations with their implementations, capturing

the fundamental equivalences of the domain, and defining how programs can be

transformed by refinement (adding more implementation details), optimization

(removing inefficiencies), and extension (adding features). These transforma-

tions enable the incremental derivation of efficient and correct by construction

program implementations from abstract program specifications. Additionally,

we designed an interpretations mechanism to associate different kinds of behav-

ior to domain knowledge, allowing developers to animate programs and predict

their properties (such as performance costs) during their derivation. We devel-

oped a tool to support the proposed framework, ReFlO, which we use to illustrate

how knowledge is encoded and used to incrementally—and mechanically—derive

efficient parallel program implementations in different application domains.

The proposed approach is an important step to make the process of developing

optimized software more systematic, and therefore more understandable and

reusable. The knowledge systematization is also the first step to enable the

automation of the development process.
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Programação Paralela por Transformação

Resumo

O desenvolvimento de software eficiente requer uma selecção de algoritmos e op-

timizações apropriados para cada plataforma de hardware alvo. Em alternativa,

a portabilidade de desempenho pode ser obtida através do uso de bibliotecas

optimizadas. Contudo, o conhecimento usado para construir as bibliotecas opti-

mizadas é perdido durante o processo de desenvolvimento, limitando a sua reuti-

lização por outros programadores para implementar novas operações ou portar

o software para novas plataformas de hardware.

Para responder a estes desafios, propomos uma abordagem baseada em mod-

elos para codificar e sistematizar o conhecimento do domı́nio que é utilizado

pelos especialistas no desenvolvimento de software optimizado. Este conheci-

mento é codificado relacionando as operações do domı́nio com as suas posśıveis

implementações, definindo como programas podem ser transformados por refina-

mento (adicionando mais detalhes de implementação), optimização (removendo

ineficiências), e extensão (adicionando funcionalidades). Estas transformações

permitem a derivação incremental de implementações eficientes de programas a

partir de especificações abstractas. Adicionalmente, desenhamos um mecanismo

de interpretações para associar diferentes tipos de comportamento ao conheci-

mento de domı́nio, permitindo aos utilizadores animar programas e prever as

suas propriedades (e.g., desempenho) durante a sua derivação. Desenvolvemos

uma ferramenta que implementa os conceitos propostos, ReFlO, que usamos para

ilustrar como o conhecimento pode ser codificado e usado para incrementalmente

derivar implementações paralelas eficientes de programas de diferentes domı́nios

de aplicação.

A abordagem proposta é um passo importante para tornar o processo de

desenvolvimento de software mais sistemático, e consequentemente, mais per-

cept́ıvel e reutilizável. A sistematização do conhecimento é também o primeiro

passo para permitir a automação do processo de desenvolvimento de software.
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Chapter 1

Introduction

The increase in computational power provided by hardware platforms in the last

decades is astonishing. Increases were initially achieved mainly through higher

clock rates, but at some point it was necessary to add more complex hardware

features, such as memory hierarchies, non-uniform memory access (NUMA) ar-

chitectures, multi-core processors, clusters, or graphics processing units (GPU)

as coprocessors, to increase computational power.

However, these resources are not “free”, i.e., in order to take full advantage

of them, the developer has to be careful with program design, and tune programs

to use the available features. As Sutter noted, “the free lunch is over” [Sut05].

The developer has to choose algorithms that best fit the target platform, he

has to prepare a program to use multiple cores/machines, and apply other op-

timizations specific for the chosen platform. Despite the evolution of compilers,

their ability to assist developers is limited as they deal with low-level program’s

representations, where important information about operations and algorithms

used in programs is lost. Different platforms expose different characteristics, and

that means the best algorithm, as well as the optimizations to use, is platform-

dependent [WD98, GH01, GvdG08]. Therefore, developers need to build and

maintain different versions of a program for different platforms. This problem

becomes even more important because usually there is no separation between

platform-specific and platform-independent code, limiting program reusability

1
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and making program maintenance harder. Moreover, platforms are constantly

evolving, thus requiring constant adaptation of programs.

This new reality moves the burden of improving performance of programs

from hardware manufacturers to software developers. To take full advantage

of hardware, programs must be prepared for it. This is a complex task, usually

reserved for application domain experts. Moreover, developers need to have deep

knowledge about the platform. These challenges are particularly noticeable in

high-performance computing, due to the importance it gives to performance.

A particular type of optimization, which is becoming more and more impor-

tant due to the ubiquity of parallel hardware platforms, is algorithm paralleliza-

tion. With this optimization we want to improve program performance making

it able to execute several tasks at the same time. This type of optimization

receives special attention in this work.

Optimized software libraries have been developed by experts for several do-

mains (e.g., BLAS [LHKK79], FFTW [FJ05], PETSc [BGMS97]), relieving end

users from having to optimize code. However, other problems remain. What hap-

pens when the hardware architecture changes? Can we leverage expert knowledge

to retarget the library to the new hardware platform? And what if we need to

add support to new operations? Can we leverage expert knowledge to optimize

the implementation of new operations? Moreover, even if the libraries are highly

optimized, when used in specific contexts they may often be further optimized

for that particular use-case. Again, leveraging expert knowledge is essential.

Typically only the final code of an optimized library is available. The expert

knowledge that was used to build and optimize the library is not present in

the code, i.e., the series of small steps manually taken by domain experts was

lost in the development process. The main problem is the fact that software

development, particularly when we talk about the highly optimized code required

by current hardware platforms, is more about hacking than science. We seek an

approach that makes the development of optimized software a science, through

a systematic encoding of expert knowledge used to produce optimized software.

Considering how rare domain experts are, this encoding is critical, so that it can
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be understood and passed along to current and next-generation experts.

To answer these challenges, as well as to handle the growing complexity of pro-

grams, we need new approaches. Model-driven engineering (MDE) is a software

development methodology that addresses the complexity of software systems. In

this work, we explore the use of model-driven techniques, to mechanize/automate

the construction of high-performance, platform-specific programs, much in same

way other fields have been leveraging from mechanization/automation since the

Industrial Revolution [Bri14].

This work is built upon ideas originally promoted by knowledge-based soft-

ware engineering (KBSE). KBSE was a field of research that emerged in the

1980s and promoted the use of transformations to map a specification to an ef-

ficient implementation [GLB+83, Bax93]. To build a program, the developers

would write a specification, and apply transformations to it, with the help of a

tool, to obtain an implementation. Similarly, to maintain a program, developers

would only change the specification, and then they would replay the derivation

process to get the new implementation. In KBSE, developers would work at

specification level, i.e., closer to the problem domain, instead of working at code

level, where important knowledge about the problem was lost, particularly when

dealing with highly-optimized code, limiting the ability to transform the pro-

gram. KBSE relied on the use of formal, machine-understandable languages to

create specifications, and tools to mediate all steps in the development process.

We seek a domain-independent approach, based on high-level, platform inde-

pendent models and transformations to encode the knowledge of domain experts.

It is not our goal to conceive new algorithms or implementations, but rather to

distill knowledge of existing programs so that tools can reuse this knowledge for

program construction.

Admittedly, this task is enormous; it has been subdivided into two large

parallel subtasks. Our focus is to present a conceptual framework that defines

how to encode knowledge required for optimized software construction. The

second task, which is parallel to our work (and out of the scope of this thesis), is

to build an engine that applies encoded knowledge to generate high-performance
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software [MBS12, Mar14]. This second task requires a deeper understanding

of the peculiarities of a domain, in particular of how domain experts decide

whether a design decision is good or not (i.e., whether it is likely to produce an

efficient implementation), so that this knowledge can be used by the engine that

automates the software generation to avoid having to explore the entire space of

valid implementations.

We explore several application domains to test the generality and limitations

of the approach we propose. We use dense linear algebra (DLA) as our main

application domain, as it is a well-known and mature domain, that has always

received the attention of researchers concerned with highly optimized software.

1.1 Research Goals

The lack of structure that characterizes the development of efficient programs in

domains such as DLA, makes it extraordinarily difficult for non-experts to de-

velop efficient programs and to reuse (let alone understand) knowledge of domain

experts.

We aim to address these challenges with an approach that promotes incre-

mental development, where complex programs are built by refining, composing,

extending and optimizing simpler building blocks. We believe the key to such

an approach is on the definition of a conceptual framework to support the sys-

tematic encoding of domain-specific knowledge that is suitable for automation

of program construction. MDE has been successful in explaining the design of

programs in many domains, thus we intend to continue this line of work with

the following goals:

1. Define a high-level framework (i.e., a theory) to encode domain-specific

knowledge, namely operations, the algorithms that implement those opera-

tions, possible optimizations, and programs architectures. This framework

should help non-experts to understand existing algorithms, optimizations,

and programs. It should also be easily extensible, to admit new operations,

algorithms and optimizations.
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2. Develop a methodology to incrementally map high-level specifications to

implementations optimized to specific hardware platforms, using previously

systematized knowledge. Decisions such as the choice of the algorithm, op-

timizations, and parallelization should be supported by this methodology.

The methodology should help non-experts to understand how algorithms

are chosen, and which optimizations are applied, i.e., the methodology

should contribute to expose the expert’s design decisions to non-experts.

3. Provide tools that allow an expert to define domain knowledge, and

that allow non-experts to use this knowledge to mechanically derive op-

timized implementations for their programs in a correct-by-construction

process [Heh84].

This research work is part of a larger project/approach, which we call De-

sign by Transformation (DxT), where the ultimate goal is to fully automate the

derivation of optimized programs. Although, as we said earlier, the tool to fully

explore the space of all implementations of a specification and to choose the

“best” program is not the goal of this research work, it is a complementary part

of this project, where systematically encoded knowledge is used.

1.2 Overview of the Proposed Solution

To achieve the aforementioned research goals we propose a framework where

domain knowledge is encoded as rewrite rules (transformations), which allows

the development process to be decomposed into small steps that contributes

to make domain knowledge more accessible to non-experts. To ease the spec-

ification and understanding of domain knowledge, we use a graphical dataflow

notation. The rewrite rules associate domain operations with their possible al-

gorithm implementations, encoding the knowledge needed to refine a program

specification into a platform-specific implementation. Moreover, rewrite rules

may also relate multiple blocks of computation that provide the same behavior.

Indirectly, this knowledge specifies that certain blocks of computation (possibly
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inefficient) may be replaced by others (possibly more efficient), which provide

the same behavior. Although we want to encode domain-specific knowledge, we

believe this framework is general enough to be used in many domains, i.e., it is

a domain-independent way to encode the domain-specific knowledge.

The same operation may be available with slightly different sets of features

(e.g., a function that can make some computation either in a 2D space or a 3D

space). We propose to relate variants of the same operation using extensions.

We use extensions to make the derivation process more incremental, as by using

them we can start with derivations of simpler variants of a program, and progres-

sively add features to the derivations, until the derivation for the fully-featured

specification is obtained.

We will provide methods to associate properties to models, so that proper-

ties about programs modeled can be automatically computed (e.g., to estimate

program performance).

The basic workflow we foresee has two phases (Figure 1.1): (i) knowledge

specification, and (ii) knowledge application. Initially we have a domain expert

systematizing the domain knowledge, i.e., he starts by encoding the domain

operations and algorithms he normally uses. He also associates properties to

operations and algorithms, to estimate their performance characteristics, for ex-

ample. Then, he uses this knowledge to derive (reverse engineer) programs he

wrote in the past. The reverse engineering process is conducted defining a high-

level specification of the program (using the encoded operations), and trying

to use the systematized knowledge (transformations) to obtain the optimized

program implementation. While reverse engineering his programs, the domain

expert will recall other algorithms he needs to obtain his optimized programs,

which he adds to the previously defined domain knowledge. These steps are

repeated until the domain expert has encoded enough knowledge to reverse en-

gineering his programs. At this point, the systematized domain knowledge can

be made available to other developers (non-experts), that can use it to derive op-

timized implementations for their programs, and to estimate properties of these

programs. Developers also start by defining the high-level specification of their
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programs (using the operations defined by domain experts), and then they apply

the transformations that have been systematized by domain experts.

Knowledge Specification
(Domain Expert)

Knowledge Application
(Non-experts)

Program
Derivation
(Reverse 

Engineering)

Domain 
Knowledge

Program 
Derivation
(Forward 

Engineering)

Figure 1.1: Workflow of the proposed solution.

Our research focuses on the first phase. It is our goal to provide tools to

mechanically apply transformations based on the systematized knowledge. Still,

the user has to choose which transformations to apply, and where. Other tools

can be used to automate the application of the domain knowledge [Mar14].

1.3 Document Structure

We start by introducing basic background concepts about MDE and parallel

programing, as well as the application domains, in Chapter 2. In Chapter 3 we

define the main concepts of the approach we propose, namely the models we

use to encode domain knowledge, how this allows the transformation of program

specifications by refinement and optimization into correct-by-construction im-

plementations, and the mechanism to associate properties to models. We also

present ReFlO, a tool that implements the proposed concepts. In Chapter 4 we

show how the proposed concepts are applied to derive programs from the rela-

tional databases and DLA domains. In Chapter 5 we show how models may be

enriched to encode extensions, which specify how a feature is added to models,
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and then, in Chapter 6, we show how extensions, together with refinements and

optimizations, are used to reverse engineer a fault-tolerant server and molecular

dynamics simulation programs. In Chapter 7 we present an evaluation of the

approach we propose based on software metrics. Related work is revised and

discussed in Chapter 8. Finally, Chapter 9 presents concluding remarks, and

directions for future work.



Chapter 2

Background

In this section we provide a brief introduction to the core concepts related to the

approach and application domains considered in this research work.

2.1 Model-Driven Engineering

MDE is a software development methodology that promotes the use of models

to represent knowledge about a system, and model transformations to develop

software systems. It lets the developers focus on the domain concepts and ab-

stractions, instead of implementation details, and relies on the use of systematic

transformations to map the models to implementations.

A model is a simplified representation of a system. It abstracts the details

of a system, making it easier to understand and manipulate, while keeping the

ability to provide the stakeholders that are using the model the details about

the system they need [BG01].

Selic [Sel03] lists five characteristics that a model should have:

Abstraction. It should be a simplified version of the system, that hides in-

significant details (e.g., technical details about languages or platforms),

and allows the stakeholders to focus on the essential properties of the sys-

tem.

9



10 2. Background

Understandability. It should be intuitive and easy to understand by the stake-

holders.

Accuracy. It should provide a precise representation of the system, giving to

the stakeholders the same answers the system would give.

Predictiveness. It should provide the needed details about the system.

Economical. It should be cheaper to construct than the physical system.

Models conform to a metamodel, which defines the rules that the metamodel

instances should meet (namely syntax and type constraints). For example, the

metamodel of a language is usually provided by its grammar, and the metamodel

of an XML document is usually provided by its XML schema or DTD.

The modeling languages can be divided in two groups. General purpose

modeling languages (GPML) try to give support for a wide variety of domains

and can be extended when they do not fit some particular need. In this group

we have languages such as the Unified Modeling Language (UML). On the other

hand, domain-specific modeling languages (DSML) are designed to support only

the needs of a particular domain or system. Modeling languages may also follow

different notation styles, such as control flow or data flow.

Model transformations [MVG06] convert one or more source models into one

or more target models. They manipulate models in order to produce new artifacts

(e.g., code, documentation, unit tests), and allow the automation of recurring

tasks in the development process.

There are several common types of transformations. Refinements are trans-

formations that add details to models without changing their correctness prop-

erties, and can be used to transform a platform-independent model (PIM) into a

platform-specific model (PSM) or, more generally, an abstract specification into

an implementation. Abstractions do the opposite, i.e., remove details from mod-

els. Refactorings are transformations that restructure models without changing

their behavior. Extensions are transformations that add new behavior or features

to models. The transformations may also be classified as endogenous, when both
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the source and the target models are instances of the same metamodel (e.g., a

code refactoring), or exogenous, when the source and the target models are in-

stances of different metamodels (e.g., the compilation of a program, or a model to

text (M2T) transformation). Regarding abstraction level, transformations may

be classified as horizontal, if the resulting model stays at the same abstraction

level of the original model, or as vertical, if the abstraction level changes as a

result of the transformation.

MDE is used for multiple purposes, bringing several benefits to software de-

velopment. The most obvious is the abstraction it provides, essential to handle

the increasing complexity of software systems. Providing simpler views of the

systems, they become easier to understand and to reason about, or even to show

their correction [BR09]. Models are closer to the domain, and use more intuitive

notations, thus even stakeholders without Computer Science skills can partici-

pate in the development process. This can be particularly useful in requirements

engineering, where we need a precise specification of the requirements, so that

developers know exactly what they have to build (natural language is usually too

ambiguous for this purpose), expressed in a notation that can be understood by

system users, so that they can validate the requirements. Being closer to the do-

main also makes models more platform independent, increasing reusability and

making easier to deploy the system in different platforms.

Models are flexible (particularly when using DSML), giving freedom for users

to choose the information they want to express, and how the information should

be organized. Users can also use different models and views to express different

views of the system.

Models can be used to validate the system or to predict its behavior without

having to support the cost of building the entire system, or the consequences

of failures in the real systems, which may not be acceptable [IAB09]. They

have been used to check for cryptographic properties [J0̈5, ZRU09], to detect

concurrency problems [LWL08, SBL08], or to predict performance [BMI04], for

example. This allows the detection of problems in early stages of the design

process, where they are cheaper to fix [Sch06, SBL09].
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Automation is another key benefit of MDE. It dramatically reduces the time

needed to perform some tasks, and usually leads to higher quality results than

when tasks are performed manually. There are several tasks of the development

process that can be automated. Tools can be used to automatically analyze mod-

els and detect problems, and even to help the user to fix them [Egy07]. Models

are also used to automate the generation of tests [AMS05, Weß09, IAB09]. Code

writing is probably the most expensive, tedious and error-prone task in software

development. With MDE we can address this problem by building transforma-

tions that automatically generate the code (or at least part of it) from models.

Empirical studies already showed the benefits of using models in software devel-

opment [Tor04, ABHL06, NC09].

Some of these tasks (e.g., validation) could also be done using only code. It is

important to note that code is also a model.1 However usually it is not the best

model to work with, because of its complexity (as it often contains irrelevant

details) and its inability to store all the needed information. For example, code

loses information about the operations used in a program, which would be useful

if we want to change their implementations (the best implementation for an

operation is often platform-specific [GvdG08]). The use of code annotations

clearly shows the need to provide additional information, i.e., the need to extend

the (code) metamodel. Moreover, code is only available in late stages of the

development process, which compromises the early detection of problems in the

system.

The use of MDE also presents challenges to developers. One of the biggest

difficulties when using MDE is the lack of stable and mature tools. This

is a very active field of research, and we are seeing tools that exist to help

code development being adapted to support models (e.g., version manage-

ment [GKE09, GE10, Kön10], slicing [LKR10], refactorings [MCH10], generics

support [dLG10]), as well as tools that address problems more specific from MDE

world (e.g., model migration [RHW+10], graphs layout [FvH10], development of

1Although code is also a model, when we use the term model we are usually talking about
more abstract types of models.
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graphical editors [KRA+10]). Standardization is another problem. DSMLs com-

promise the reuse of tools and methodologies, as well as interoperability. On the

other hand, GPMLs are too complex for most of cases [FR07]. The generation

of efficient code is also a challenge. However, as Selic noted [Sel03], this was

also a problem in the early days of compilers, but eventually they become able

to produce code as good as the code that an expert would produce. So we have

reasons to believe that, as tools become more mature, this concern will diminish.

2.2 Parallel Computing

Parallel computing is a programming technique where a problem is divided into

several tasks that can be executed concurrently by many processing units. By

leveraging the use of many processing units to solve the problem, we can make

the computation run faster and/or address larger problems. Parallel computing

appeared decades ago, and it was mainly used in scientific software. In the

past decade it has become essential in all kinds of software applications, due to

the difficulties to improve the performance of a single processing unit,2 making

multicore devices ubiquitous.

However, several difficulties arise developing parallel programs, when com-

paring with developing sequential programs. Additional logic/code is typically

required to handle concurrency/coordination of tasks. Sometimes even new al-

gorithms are required, as the ones used in the sequential version of the programs

do not perform well when parallelized. Concurrent execution of tasks often make

the order of the instruction flow of tasks non-deterministic, making debugging

and profiling more difficult. The multiple and/or more complex target hardware

platforms may also require specialized libraries and tools (e.g., for debugging or

profiling), and contribute to the problem of performance portability.

Flynn’s taxonomy [Fly72] provides a common classification for computer ar-

chitectures, according to the parallelism that can be explored:

2Note that even single core CPU may offer instruction-level parallelism. More on this later.
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SISD. Systems where a single stream of instructions is applied to one data

stream (there is instruction-level parallelism only);

SIMD. Systems where a single stream of instructions is applied to multiple data

streams (this is typical in GPUs);

MISD. Systems where multiple streams of instructions are applied to a single

data stream; and

MIMD. Systems where multiple streams of instructions are applied to multiple

data streams.

One of the most common techniques of exploring parallelism is known as

single program multiple data (SPMD) [Dar01]. In this case the same program

is executed on multiple data streams. Conditional branches are used so that

different instances of the program execute different instructions, thus this is a

subcategory of MIMD (not SIMD).

The dataflow computing model is an alternative to the traditional Von Neu-

mann model. In this model we have operations with inputs and outputs. The

operations can be executed when their inputs are available. Operations are con-

nected to each other to specify how data flows through operations. Any two op-

erations that do not have a data dependency among them may be executed con-

currently. Therefore this programming model is well-suited to explore parallelism

and model parallel programs [DK82, NLG99, JHM04]. Different variations of this

model have been proposed over the years [Den74, Kah74, NLG99, LP02, JHM04].

Parallelism may appear at different levels, from fine-grained instruction-level

parallelism, to higher-level (e.g., loop-, procedure- or program-level) parallelism.

Instruction-level parallelism (ILP) takes advantage of CPU features such as mul-

tiple execution units, pipelining, out-of-order execution, or speculative execution,

available on common CPUs nowadays, so that the CPU can execute several in-

structions simultaneously. In this research work we do not address ILP. Our

focus is on higher-level (loop- and procedure-level) parallelism, targeting shared

and distributed memory systems.
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In shared memory systems all processing units see the same address space,

and they can all access all memory data, providing simple (and usually fast) data

sharing. However, shared memory systems typically offer a limited scalability as

the number of processing units increases. In distributed memory systems each

processing unit has its own local memory / address space, and the network is

used to obtain data from other processing units. This makes sharing data among

processing units more expensive, but distributed memory systems typically pro-

vide more parallelism. Often both types of systems are mixed, where we have a

large distributed memory system, where each of its elements is a shared memory

system, allowing programs to benefit from fast data sharing inside the shared

memory system, but also taking advantage of the scalability of a distributed

memory system.

The message passing programming model is typically used in distributed mem-

ory systems. In this case, each computing unit (process) controls its data, and

other processes can send and receive messages to exchange data. The mes-

sage passing interface (MPI) [For94] is the de facto standard for this model. It

specifies a communication API, that provides operations to send/receive data

to/from other processes, as well as collective communications, to distribute data

among processes (e.g., MPI BCAST that copies the data to each processes, or

MPI SCATTER that divides data among all processes) and to collect data from all

processes (e.g., MPI REDUCE that combines data elements from each processes, or

MPI GATHER that receives chunks of data from each process). This programming

model is usually employed when implementing SPMD parallelism.

2.3 Application Domains

2.3.1 Dense Linear Algebra

Several sciences and engineering domains face problems where they need to use

linear algebra operations to solve them. Due to its importance, the linear algebra

domain has received the attention of researchers, in order to develop efficient
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algorithms to solve problems such as systems of linear equations, linear least

squares, eigenvalue, or singular value decomposition.

This is a mature and well understood domain, with regular programs.3 More-

over, the basic building blocks of the domain were already identified, and efficient

implementations of these blocks are provided by libraries. This is the main do-

main studied in this research work.

In this section we provide a brief overview of the field, introducing some

definitions and common operations. Developers that need highly optimized soft-

ware in this domain usually rely on well-known APIs/libraries, which are also

presented.

2.3.1.1 Matrix Classifications

We present some common classifications of matrices, that help to understand

operations and algorithms of linear algebra.

Identity. A square matrix A is an identity matrix if it has ones on the diagonal,

and all other elements are zeros. The n × n identity matrix is usually

denoted by In (or simply I when the size of the matrix is not relevant).

Triangular. A matrix A is triangular if it has all elements above or below the

diagonal equal to zero. It is called lower triangular if the zero elements are

above the diagonal, and upper triangular if the zero elements are below

the diagonal. If all elements on the diagonal are zeros, it is said strictly

triangular. If all elements on the diagonal are ones, it is said unit triangular.

Symmetric. A matrix A is symmetric if it is equal to its transpose, A = AT.

Hermitian. A matrix A is hermitian if it is equal to its conjugate transpose,

A = A∗. If A contains only real numbers, it is hermitian if it is symmetric.

Positive Definite. A n × n complex matrix A is positive definite if for all v 6=
0 ∈ Cn, vAv∗ > 0 (or vAvT > 0, for v 6= 0 ∈ Rn if A is a real matrix).

3DLA programs are regular because (i) they rely on dense arrays as their main data struc-
tures (instead of pointer-based data structures, such as graphs), and (ii) the execution flow of
programs is predictable without knowing the input values.
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Nonsingular. A square matrix A is nonsingular if it is invertible, i.e., if there

is a matrix B such that AB = BA = I.

Orthogonal. A matrix A is orthogonal if its inverse is equal to its transpose,

ATA = AAT = I.

2.3.1.2 Operations

LU Factorization. A square matrix A can be decomposed into two matrices

L, unit lower triangular, and U, upper triangular, such that A = LU. This process

is called LU factorization (or decomposition).

It can be used to solve linear systems of equations. Given a system of the

form Ax = b (equivalent to L(Ux) = b), we can find x, first solving the system

Ly = b, and then the system Ux = y. As L and U are triangular matrices, any of

these systems is “easy” to solve.

Cholesky Factorization. A square matrix A, that is hermitian and positive

definite, can be decomposed into LL∗, such that L is a lower triangular matrix

with positive diagonal elements. This process is called Cholesky factorization (or

decomposition).

As LU factorization, it can be used to solve linear systems of equations,

providing a better performance. However, it is not as general as LU factorization,

as the matrix has to have certain properties.

2.3.1.3 Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) is a standard API for the DLA

domain, which provides basic operations over vectors and matrices [LHKK79,

Don02a, Don02b].

The operations provided are divided in three groups. Level 1 provides scalar

and vector operations, level 2 provides matrix-vector operations, and level 3

matrix-matrix operations. These operations are the basic building blocks of the

linear algebra domain, and upon them, we can build more complex programs.
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There are several implementations of BLAS available, developed by the aca-

demic community and hardware vendors (such as Intel [Int] and AMD [AMD]),

and optimized for different platforms. Using BLAS, the developers are released

from having to optimize the basic functions for different platforms, contributing

to better performance portability.

2.3.1.4 Linear Algebra Package

The Linear Algebra Package (LAPACK) [ABD+90] is a library that provides

functions to solve systems of linear equations, linear least squares problems,

eigenvalue problems, and singular value problems. It was built using BLAS, in

order to provide performance portability.

ScaLAPACK [BCC+96] and PLAPACK [ABE+97] are two extensions to LA-

PACK that provide implementations for distributed memory systems of some of

the functions of LAPACK.

2.3.1.5 FLAME

The Formal Linear Algebra Methods Environment (FLAME) [FLA] is a project

that aims to make linear algebra computations a science that can be under-

stood by non-experts in the domain, through the development of “a new nota-

tion for expressing algorithms, a methodology for systematic derivation of algo-

rithms, Application Program Interfaces (APIs) for representing the algorithms

in code, and tools for mechanical derivation, implementation and analysis of

algorithms and implementations” [FLA]. This project also provides a library,

libflame [ZCvdG+09], that implements some of the operations provided by BLAS

and LAPACK.

The FLAME Notation. The FLAME notation [BvdG06] allows the speci-

fication of dense linear algebra algorithms without exposing the array indices.

The notation also allows the specification of different algorithms for the same

operation, in a way that makes them easy to compare. Moreover, algorithms
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Algorithm: C := mult(A, B, C)

Partition A→
(
AL AR

)
, B→

(
BT

BB

)
where AL has 0 columns, BT has 0 rows

while m(AL) < m(A) do
Repartition

(
AL AR

)
→
(
A0 a1 A2

)
,

(
BT

BB

)
→

 B0

bT1
B2


where a1 has 1 column, bT1 has 1 row

C = a1b
T
1 + C

Continue with

(
AL AR

)
←
(
A0 a1 A2

)
,

(
BT

BB

)
←

 B0
bT1
B2


endwhile

Figure 2.1: Matrix-matrix multiplication in FLAME notation.

function [C] = mult(A, B, C0) {
C = C0;
s = size(A,2);

for i = 1:s
C = C + A(:,i) * B(i,:);

end
}

Figure 2.2: Matrix-matrix multiplication in Matlab.

expressed using this notation can be easily translated to code using the FLAME

API.

We show an example using this notation. Figure 2.1 depicts a matrix-matrix

multiplication algorithm using flame notation (the equivalent Matlab code is

shown in Figure 2.2).

Instead of using indices, in FLAME notation we start by dividing the matrices

in two parts (Partition block). In the example, matrix A is divided in AL (the
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left part of the matrix) and AR (the right part of the matrix), and matrix B is

divided in BT (the top part) and BB (the bottom part).4 The matrices AL and BT

will store the parts of the matrices that were already used in the computation,

therefore initially these two matrices are empty. Then we have the loop, that

iterates over the matrices, while the size of matrix AL (given by m(AL)) is less than

the size of A, i.e., while there are elements of matrix A that have not been used

in the computation yet. At each iteration, the first step is to expose the values

that will be processed in the iteration. This is done in the Repartition block.

From matrix AL we create matrix A0. The matrix AR is divided in two matrices,

a1 (the first column) and A2 (the remaining columns). Thus, we exposed in a1

the first column of A that has not been used in the computation. A similar

operation is applied to matrices BT and BB to expose a row of B. Then we update

the value of C (the result), using the exposed values. At the end of the iteration,

in the Continue with block, the exposed matrices are joined with the parts of

the matrices that contain the values already used in the computation (i.e., a1

is joined with A0 and bT1 is joined with B0). Therefore, in the next iteration the

next column/row will be exposed.

For efficiency reasons, matrix algorithms are usually implemented using

blocked versions, where at each iteration we process several rows/columns in-

stead of only one. A blocked version of the algorithm from Figure 2.1 is shown

in Figure 2.3. Notice that the structure of the algorithm remains the same.

When we repartition the matrix to expose the next columns/rows, instead of

creating a column/row matrix, we create a matrix with several columns/rows.

Using Matlab (Figure 2.4), the indices make code complex (and using language

such as C, that does not provide powerful index notations, it would be even more

difficult to understand the code).

FLAME API. The Partition, Repartition and Continue with instruc-

tions are provided by FLAME API [BQOvdG05], which provides an easy way to

translate an algorithm implemented in FLAME notation to code. The FLAME

4In this algorithm we divided the matrices in two parts. Other algorithms may require the
matrices to be divided in four parts, top-left, top-right, bottom-left and bottom-right.
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Algorithm: C := mult(A, B, C)

Partition A→
(
AL AR

)
, B→

(
BT

BB

)
where AL has 0 columns, BT has 0 rows

while m(AL) < m(A) do
Determine block size b

Repartition

(
AL AR

)
→
(
A0 A1 A2

)
,

(
BT

BB

)
→

 B0

B1
B2


where A1 has b columns, B1 has b rows

C = A1B1 + C

Continue with

(
AL AR

)
←
(
A0 A1 A2

)
,

(
BT

BB

)
←

 B0
B1

B2


endwhile

Figure 2.3: Matrix-matrix multiplication in FLAME notation (blocked version).

function [C] = mult(A, B, C0) {
C = C0;
s = size(A,2);

for i = 1:mb:s
b = min(mb, s-i+1);
c = c + a(:,i:i+b-1) * b(i+b-1,:);

end
}

Figure 2.4: Matrix-matrix multiplication in Matlab (blocked version).

API is available for C and Matlab languages. The C API also provides some

additional functions to create and destroy matrix objects, to obtain information

about the matrix objects, and to show the matrix contents.

Figure 2.5 shows the implementation of matrix-matrix multiplication (un-

blocked version) in Matlab using the FLAME API (notice the similarities be-

tween this implementation and algorithm specification presented in Figure 2.1).



22 2. Background

function [ C_out ] = mult( A, B, C )
[ AL, AR ] = FLA_Part_1x2( A, ...

0, ’FLA_LEFT’ );
[ BT, ...
BB ] = FLA_Part_2x1( B, ...

0, ’FLA_TOP’ );

while ( size( AL, 2 ) < size( A, 2 ) )
[ A0, a1, A2 ]= FLA_Repart_1x2_to_1x3( AL, AR, ...

1, ’FLA_RIGHT’ );
[ B0, ...

b1t, ...
B2 ] = FLA_Repart_2x1_to_3x1( BT, ...

BB, ...
1, ’FLA_BOTTOM’ );

C = C + a1 * b1t;

[ AL, AR ] = FLA_Cont_with_1x3_to_1x2( A0, a1, A2, ...
’FLA_LEFT’ );

[ BT, ...
BB ] = FLA_Cont_with_3x1_to_2x1( B0, ...

b1t, ...
B2, ...
’FLA_TOP’ );

end
C_out = C;

return

Figure 2.5: Matlab implementation of matrix-matrix multiplication using
FLAME API.

Algorithms for Factorizations Using FLAME Notation. We now show

algorithms for LU factorization (Figure 2.6) and Cholesky factorization (Fig-

ure 2.7) using the FLAME notation. These algorithms were systematically de-

rived from a specification of the operations [vdGQO08]. Other algorithms exist,

see [vdGQO08] for more details about these and other algorithms.

In the algorithms we present here, we do not explicitly define the size of the

matrices that are exposed in each iteration (defined by b). These algorithms are

generic, as they can be used to obtain blocked implementations (for b > 1), or

unblocked implementations (for b = 1).

2.3.1.6 Elemental

Elemental [PMH+13] is a library that provides optimized implementations of

DLA operations targeted to distributed memory systems. It follows the SPMD
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Algorithm: A := LU(A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Repartition(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12
A20 A21 A22


where A11 is b× b

A11 = LU(A11)
A21 = A21 TriU(A−111 )
A12 = TriL(A−111 ) A12
A22 = A22 - A21 A12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02
A10 A11 A12

A20 A21 A22


endwhile

Figure 2.6: LU factorization in FLAME notation.

model, where the different processes execute the same program, but on different

elements of the input matrices. On the base of Elemental library there is a set of

matrix distributions to a two-dimensional process grid, and redistribution oper-

ations that can change the distribution of a matrix using MPI collective commu-

nications. To increase programmability, the library implementations hides those

redistribution operations on assignment instructions.

Matrix distributions assume the p processes are organized as a p = r×c grid.

The default Elemental distribution, denoted by [MC, MR], distributes the elements

of the matrix in a cyclic way, both on rows and columns. Another important

distribution is denoted by [∗, ∗], and it stores all elements of the matrix redun-

dantly in all processes. Other distributions are available, to partition the matrix

in cyclic way, either on rows or columns only. Table 2.1 (adapted from [Mar14],
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Algorithm: A := Chol(A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Repartition(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12
A20 A21 A22


where A11 is b× b

A11 = Chol(A11)
A21 = A21 TriL(A−H11 )
A22 = A22 - A21 A

H
21

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02
A10 A11 A12

A20 A21 A22


endwhile

Figure 2.7: Cholesky factorization in FLAME notation.

Distribution Location of data in matrix
[∗, ∗] All processes store all elements

[MC, MR] Process (i%r, j%c) stores element (i, j)
[MC, ∗] Row i of data stored redundantly on process row i%r

[MR, ∗] Row i of data stored redundantly on process column i%c

[∗, MC] Column j of data stored redundantly on process row j%r

[∗, MR] Column j of data stored redundantly on process column j%c

[VC, ∗] Row i of data stored on process (i%r, i/r%c)
[VR, ∗] Row i of data stored on process (i/c%r, i%c)
[∗, VC] Column j of data stored on process (j%r, i/r%c)
[∗, VR] Column j of data stored on process (j/c%r, j%c)

Table 2.1: Matrix distributions on a p = r × c grid (adapted from [Mar14], p.
79).
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p. 79), summarizes the different distributions offered by Elemental.

Depending on the DLA operation, different distributions are used so that

computations can be executed on each process without requiring communica-

tions with other processes. Therefore, before operations, the matrices are redis-

tributed to an appropriate distribution (from the default distribution), and after

operations the matrices are redistributed back to the default distribution.

2.3.2 Relational Databases

Relational databases where proposed to abstract the way information is stored

on data repositories [Cod70]. We choose this domain to evaluate the approach

we propose as it is a well-known domain among computer scientists, and its

derivations can be more easily appreciated and understood by others (unlike

the other domains considered, where domain-specific knowledge—which typically

only computer scientists that work on the domain possess—is required).

The basic entities on this domain are relations (a.k.a. tables), storing sets

tuples that may be queried by users. Thus, a typical program in this domain

queries the relations stored in the database management system, producing a

new relation. The inputs and outputs of programs are, therefore, relations (or

streams of tuples). Queries are usually specified by a composition of relational

operations (using the SQL language [CB74]). The functional style used by queries

(that transform streams of tuples) makes the programs in this domain well-suited

to be expressed using the dataflow computing model, which supports implicit

parallelism. Programs in this domain are often parallelized using a map-reduce

strategy [DG08].

The main case studies of this domain we use are based on the equi-join oper-

ation, where tuples of two relations are combined based on an equality predicate.

Given a tuple from each relation, the predicate tests whether a certain element

of a tuple is equal to a certain element of the other tuple. If they are equal, the

tuples are joined and added to the resulting relation.
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2.3.3 Fault-Tolerant Request Processing Applications

Request processing applications (RPA) are defined as programs that accept re-

quests from a set of clients, that are then handled by the internal components

of the programs, and finally output. These programs may implement a cylinder

topology, where the outputs are redirected back to the clients. They can be

modeled using the dataflow computing model, where the clients and the internal

components of the program are the operations. However, RPAs may have state,

and in some cases operations may be executed when only part of its inputs are

available, which is unusual in the dataflow programing model.

We use UpRight [CKL+09] as a case study in this research work. It is a

state-of-the-art fault-tolerant architecture for a stateful server. It implements

a simple RPA, where the clients’ requests are sent to an abstract server (with

state) component, and then the server outputs responses back to the client.

Even though the abstract specification of the program implemented is simple,

making this specification fault-tolerant and efficient, and considering that the

server is stateful, results in a complex implementation [CKL+09]. The complexity

of its final implementation motivated us to explore techniques that allowed to

decompose the full system as a set of composable features, in order to make the

process of modeling the domain knowledge more incremental.

2.3.4 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations [FS01] use computational resources to

predict properties of materials. The materials are modeled by a set of parti-

cles (e.g., atoms or molecules) with certain properties (e.g., position, velocity, or

force). The set of particles is initialized based on some properties such as density

and initial temperature. The simulation starts by computing the interactions be-

tween the particles, iteratively updating its properties, until the system stabilizes,

at which point the properties of the material can be studied/measured. The ex-

pensive part of the simulation is the computation of the interactions between all

particles, which using a naive implementation has a complexity of O(N2) (where
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N is the number of particles). At each step of the iteration additional properties

of the simulation are computed, to monitor its state.

The domain of MD simulations is vast. For different materials used and

properties to study, different particles and different types of particle interactions

are considered. Popular software packages for MD simulations include GRO-

MACS [BvdSvD95], NAMD [PBW+05], AMBER [The], CHARMM [BBM+09],

LAMPPS [Pli95], or MOIL [ERS+95].

In our case study we use the Lennard-Jones potential model, as we have previ-

ous experience with the implementation of this type of MD simulation (required

to be able to extract the domain knowledge needed to implement the simula-

tion). Despite the simplicity of the Lennard-Jones potential model, making the

computation of particle interactions efficient may require the addition of certain

features to the algorithm, which results in a small product line of MD programs.

Thus, this case study allows us to verify how the approach we propose is suitable

to model optional program features. The parallelization of the MD simulation is

done at loop-level (in the loop that computes the interactions among particles),

and follows the SPMD model.





Chapter 3

Encoding Domains: Refinement

and Optimization

The development of optimized programs is complex. It is a task usually reserved

for experts with deep knowledge about the program domain and target hardware

platform. When building programs, experts use their knowledge to optimize the

code, but this knowledge is not accessible to others, who can see the resulting

program, but can not reproduce the development process, nor apply that knowl-

edge to their own programs. Moreover, compilers are not able to apply several

important domain specific optimizations, for example, because the code requires

external library calls (that the compiler does not know), or because at the level

of abstraction at which the compiler works important information about the

algorithm was already lost, making it harder to identify the computational ab-

stractions that may be optimized. We propose to encode the domain knowledge

in a systematic way, so that the average user can appreciate programs built by

experts, reproduce the development process, and leverage the expert knowledge

when building (and optimizing) their own programs. This systematization of

the domain knowledge effectively results in a set of transformations that experts

apply to their programs to incrementally obtain the optimized implementations,

and that can be mechanically applied by tools. This is also the first step to

enable automation in the derivation of optimized programs.

29
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In this chapter, we first present concepts used to capture the knowledge of

a domain, and the transformations that those concepts encode, which allow us

to synthesize optimized program architectures. These concepts are the base

for the DxT approach for program development. Then we describe ReFlO, a

tool suite that we developed to support specification of domain knowledge and

the mechanical derivation of optimized program architectures by incrementally

transforming a high-level program specification.

3.1 Concepts

A dataflow graph is a directed multigraph, where nodes (or boxes) process data,

that is then passed to other boxes as specified by the edges (or connectors).

Ports specify the different inputs and outputs of a box, and the connectors link

an output port to an input port. Input ports are drawn as nubs on the left-

side of boxes; output ports are drawn as nubs on the right-side. We obtain a

multigraph, as there may exist more than one connector linking different ports of

the same boxes.1 Dataflow graphs provide a simple graphical notation to model

program architectures and components, and it is the notation style we use in

this work. When referring to a dataflow graph modeling a program architecture,

we also use the term dataflow architecture.

We do not impose a particular model of computation to our dataflow archi-

tectures, i.e., different domains may specify different rules to how a dataflow

architecture is to be executed (the dataflow computing model is an obvious can-

didate to specify the model of computation).

An example of a simple dataflow architecture is given in Figure 3.1, where we

have an architecture, called ProjectSort, that projects (eliminates) attributes

of the tuples of its input stream and then sorts them.

We call boxes PROJECT and SORT interfaces, as they specify only the abstract

behavior of operations (their inputs and outputs, and, informally, their seman-

tics). Besides input ports, boxes may have other inputs, such as the attribute to

1Instead of a directed multigraph, a dataflow architecture could be a directed hyper-
graph [Hab92]. A box is a hyperedge, a port is a tentacle, and connectors are nodes.
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Figure 3.1: A dataflow architecture.

be used as sort key, in the case of the SORT interface, or the list of attributes to

project, in the case of the Project interface, that are not shown in the graphical

representation of boxes (in order to make their graphical representation simpler).

We follow the terminology proposed by Das [Das95], and we call the former es-

sential parameters, and the latter additional parameters.

Figure 3.1 is a PIM as it makes no reference to or demands on its concrete

implementation. It is a high-level specification that can be mapped to a partic-

ular platform or for particular inputs. This mapping is accomplished in DxT by

incrementally applying transformations. Therefore, we need to capture the valid

transformations that can be applied to architectures in a certain domain.

A transformation can map an interface directly to a primitive box, repre-

senting a concrete code implementation. Besides primitives, there are other

implementations of an interface that are expressed as a dataflow graph, called

algorithms. Algorithms may reference interfaces. Figure 3.2 is an algorithm. It

shows the dataflow graph called parallel sort of a map-reduce implementation

of SORT. Each box inside Figure 3.2, namely SPLIT, SORT and SMERGE (sorted

merge), is an interface which can be subsequently elaborated.

Figure 3.2: Algorithm parallel sort, which implements interface SORT using
map-reduce.

A refinement [Wir71] is the replacement of an interface with one of its im-

plementations (primitive or algorithm). By repeatedly applying refinements,
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eventually a graph of wired primitives is produced. Figure 3.1 can be refined

by replacing SORT with its parallel sort algorithm, and PROJECT with a similar

map-reduce algorithm. Doing so yields the graph of Figure 3.3a, or equivalently

the graph of Figure 3.3b, obtained by removing modular boundaries. Removing

modular boundaries is called flattening.

(a)

(b)

Figure 3.3: Parallel version of the ProjectSort architecture: (a) with modular
boundaries and (b) without modular boundaries.

Refinements alone are insufficient to derive optimized dataflow architectures.

Look at Figure 3.3b. We see a MERGE followed by the SPLIT operation, that is, two

streams are merged and the resulting stream is immediately split again. Let inter-

face IMERGESPLIT be the operation that receives two input streams, and produces

two other streams, with the requirement that the union of the input streams is

equal to the union of the output streams (see Figure 3.4a). ms mergesplit (Fig-

ure 3.4b) is one of its implementations. However, the ms identity algorithm

(Figure 3.4c) provides an alternative implementation, that is obviously more

efficient than ms mergesplit, as it does not require MERGE and SPLIT computa-

tions.2

2Readers may notice that algorithms ms mergesplit and ms identity do not produce
necessarily the same result. However, both implement the semantics specified by IMERGESPLIT,
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(a) (b)

(c)

Figure 3.4: IMERGESPLIT interface and two possible implementations.

We can use ms identity to optimize ProjectSort. The first step is to ab-

stract Figure 3.3b with the IMERGESPLIT interface, obtaining Figure 3.5a. Then,

we refine IMERGESPLIT to its ms identity algorithm, to obtain the optimized

architecture for ProjectSort (Figure 3.5b). We call the action of abstracting

an (inefficient) composition of boxes to an interface and then refining it to an

alternative implementation an optimization.3 We can also remove the modular

boundaries of the ms identity algorithm, obtaining the architecture of Fig-

ure 3.5c. After refining each interface of Figure 3.5c to a primitive, we would

obtain a PSM for the PIM presented in Figure 3.1, optimized for a parallel

hardware platform.

3.1.1 Definitions: Models

In this section we define the concepts we use to model a domain. A simplified

view of how the main concepts used relate to each other is shown in Figure 3.6, as

a UML class diagram (a.k.a. metamodel). Next we explain each type of objects

of Figure 3.6, and the constraints that are associated with this diagram.

and the result of ms identity is one of the possible results of ms mergesplit, i.e., ms identity

removes non-determinism.
3Although called optimizations, these transformations do not necessarily improve perfor-

mance, but combinations of optimizations typically do.



34 3. Encoding Domains: Refinement and Optimization

(a)

(b)

(c)

Figure 3.5: Optimizing the parallel architecture of ProjectSort.
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A box is either an interface, a primitive component, an algorithm, or a

dataflow architecture. They are used to encode domain knowledge and/or specify

program architectures.

Interface boxes are used to specify (abstract) the operations available in a

certain domain.

Definition: An interface is a tuple with attributes:

(name, inputs, outputs, parameters)

where name is the interface’s name, inputs is the ordered set of input ports,

outputs is the ordered set of output ports, and parameters is the ordered set

of additional parameters. The name identifies the interface, i.e., two interfaces

modeling different operations must have different names. The operations speci-

fied by interfaces may have side-effects (e.g., state).4

Operations can be implemented in different ways (using different algorithms

or library implementations), which are expressed either using a primitive box or

an algorithm box. Primitive boxes specify direct code implementations, whereas

algorithm boxes specify implementations as compositions of interfaces.

Definition: A primitive component (or simply primitive) is a tuple with at-

tributes:

(name, inputs, outputs, parameters)

where name is the primitive’s name, inputs is the ordered set of input ports,

outputs is the ordered set of output ports, and parameters is the ordered set

of additional parameters. The name identifies the primitive, i.e., two different

primitives (modeling different code implementations) must have different names.

Definition: An algorithm is a tuple with attributes:

(name, inputs, outputs, parameters, elements, connectors)

4We will use the notation prop(x) to denote the attribute prop of tuple x (e.g., name(I)
denotes the name of interface I, and inputs(I) denotes the inputs of interface I.)
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where name is the algorithm’s name, inputs is the ordered set of input ports,

outputs is the ordered set of output ports, parameters is the ordered set of

additional parameters, elements is a list of interfaces, primitives or algorithms,

and connectors is a list of connectors. The list of elements, together with the

set of connectors, encode a dataflow graph that specifies how operations (boxes)

are composed to produce the behavior of the algorithm. For all input ports

of internal boxes contained in an algorithm,5 there must be one and only one

connector that ends at that port (i.e., there must be a connector that provides

the input value, and that connector must be unique). For all output ports of

the algorithm, there must be one and only one connector that ends at that port

(i.e., there must be a connector that provides the output of the algorithm, and

that connector must be unique).

Finally, we have architecture boxes to specify program architectures, which

are identical to algorithm boxes.

Definition: A dataflow architecture (or simply architecture) is a tuple with

attributes:

(name, inputs, outputs, parameters, elements, connectors)

where name is the architecture’s name, inputs is the ordered set of input ports,

outputs is the ordered set of output ports, parameters is the ordered set of

additional parameters, elements is a list of interfaces, primitives and algorithms,

and connectors is a list of connectors. The list of elements, together with the

set of connectors, encode a graph that specifies how operations are composed

to produce the desired behavior. For all input ports of boxes contained in an

architecture, there must be one and only one connector that ends at that port

(i.e., there must be a connector that specifies the input value, and that connector

must be unique). For all output ports of the architecture, there must be one an

only one connector that ends at that port (i.e., there must be a connector that

5Given an algorithm A, we say that elements(A) are the internal boxes of A, and that A is
the parent of boxes b ∈ elements(A).
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specifies the output of the architecture, and that connector must be unique). All

boxes contained in an architecture that have the same name must have the same

inputs, outputs, and additional parameters, as they are all instances of the same

entity (only the values of additional parameters may be different, as they depend

on the context in which a box is used).

As we mentioned before, inputs and outputs of boxes are specified by ports

and additional parameters, which we define below.

Definition: A port specifies inputs and outputs of boxes. It is a tuple with

attributes:

(name, datatype)

where name is the port’s name, and datatype is the port’s data type. Each input

port of a box must have a unique name (the same must hold for output ports).

However, boxes may have an input and an output port with the same name (in

case we need to distinguish them, we use the subscripts in and out).

Definition: A parameter is a tuple with attributes:

(name, datatype, value)

where name is the parameter’s name, datatype the parameter’s data type, and

value the parameter’s value. The value of a parameter is undefined for boxes

that are not contained in other boxes. For an algorithm or architecture A, the

values of boxes b ∈ elements(A) may be a constant (represented by a pair

(C, expr), where C is used to indicate the value is a constant, and expr defines

the constant’s value), or the name of a parameter of the parent box A (represented

by (P , name), where P is used to indicate the value is a parameter of the parent

box and name is the name of the parameter). As ports, each additional parameter

of a box must have a unique name.

We specify algorithms and architectures composing boxes. Connectors are

used to link boxes’ ports and define the dataflow graph that expresses how boxes

are composed to produce the desired behavior.
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Definition: A connector is a tuple with attributes:

(sbox, sport, tbox, tport)

where sbox is the source box of the connector, sport is the source port of the

connector, tbox is the target box of the connector, and tport is the target

box of the connector. Connectors are part of algorithms, and connect ports of

boxes inside the same algorithm and/or ports of the algorithm. If (b, p, b′, p′)

is a connector of algorithm A, then b, b′ ∈ ({A} ∪ elements(A)). Moreover, the

following conditions must hold:

• if b ∈ {A}, then p ∈ inputs(b)

• if b ∈ elements(A), then p ∈ outputs(b)

• if b′ ∈ {A}, then p′ ∈ outputs(b′)

• if b′ ∈ elements(A), then p ∈ inputs(b′)

Operations implementations are specified by primitive and algorithm boxes.

Rewrite rules are used to associate a primitive or algorithm box to the interface

that represents the operation it implements. The set of rewrite rules defines the

model of the domain.

Definition: A rewrite rule is a tuple with attributes:

(lhs, rhs)

where lhs is an interface, and rhs is a primitive or algorithm box that implements

the lhs. The lhs and rhs must have the same inputs, outputs and additional

parameters (same names and data types), i.e., given a rewrite rule R:

inputs(lhs(R)) = inputs(rhs(R))

∧ outputs(lhs(R)) = outputs(rhs(R))

∧ parameters(lhs(R)) = parameters(rhs(R))
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The rhs box must also implement the semantics of the lhs interface. When an

algorithm A is the rhs of a rewrite rule, we require that elements(A) contains

only interfaces. (In Figure 3.12 and Figure 3.13 we show how we graphically

represent rewrite rules.)

Definition: A ReFlO Domain Model (RDM) is a set of rewrite rules. All boxes

contained in an RDM that have the same name encode the same entity, and

therefore they must have the same inputs, outputs, and additional parameters

(only the values of additional parameters may be different).

3.1.2 Definitions: Transformations

We now present a definition of the transformations we use in the process of

deriving optimized program architectures from an initial high-level architecture

specification.

As we saw previously, usually the derivation process start by choosing im-

plementations for the interfaces used in the program architecture, which allows

users to select an appropriate implementation for a certain target hardware plat-

form, or certain program inputs. This is done using refinement transformations.

The possible implementations for an interface are defined by the rewrite rules

whose LHS is the interface to be replaced.

Definition: A refinement replaces an interface with one of its implementations.

Let P be an architecture, (I, A) a rewrite rule, I′ an interface present in P such

that name(I′) = name(I), and B the box that contains I′ (i.e., B is either the

architecture P or an algorithm contained in the architecture P, such that I′ ∈
elements(B)). We can refine architecture P replacing I′ with a copy of A (say A′).

This transformation removes I′ from elements(B), and redirects the connectors

from I′ to A′. That is, for each connector c ∈ connectors(B) such that sbox(c) =

I′, sbox(c) is updated to A′ and sport(c) is updated to p, where p ∈ outputs(A′)

and name(p) = name(sport(c)). Similarly, for each connector c ∈ connectors(B)

such that tbox(c) = I′, tbox(c) is updated to A′ and tport(c) is updated to p,
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where p ∈ inputs(A′) and name(p) = name(tport(c)). Finally, parameters(A′)

is updated to parameters(I′).

Example: An application of refinement was shown in Figure 3.5.

Refinements often introduce suboptimal compositions of boxes that cross

modular boundaries of components (algorithm boxes). These modular bound-

aries can be removed using the flatten transformation, which enables the opti-

mization of inefficient compositions of boxes present in the architecture.

Definition: The flatten transformation removes algorithms’ boundaries. Let A

be an algorithm, and B an algorithm or architecture that contains A. The flat-

ten transformation moves boxes b ∈ elements(A) to elements(B). The same

is done for connectors c ∈ connectors(A), which are moved to connectors(B).

Then connectors linked to ports of A are updated. For each connector c such

that sport(c) ∈ (inputs(A) ∪ outputs(A)), let c′ be the connector such that

tport(c′) = sport(c). The value of sport(c) is updated to sport(c′) and

the value of sbox(c) is updated to sboc(c′). The additional parameters of

the internal boxes of A are also updated. For each b ∈ elements(A), each

param ∈ parameters(b) is replaced by UpdateParam(param, parameters(A)).

Lastly, algorithm A is removed from elements(B), and connectors c such that

tport(c) ∈ (inputs(A) ∪ outputs(A)) are removed from connectors(B).

Example: An application of the flatten transformation was shown

in Figure 3.3.

This transformation has to update the values of additional parameters of

boxes contained inside the algorithm to be removed, which is done by the function

UpdateParam defined below.

Definition: Let UpdateParam be the function defined below. For a parameter

(name, type, value) and an ordered set of parameters ps:

UpdateParam((name, type, value), ps) = (name, type, value′)
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where

value′ =

{
value if value = (C, x)

y if value = (P , x) ∧ (x, type, y) ∈ ps

After flattening an architecture opportunities for optimization (essentially,

inefficient compositions of boxes) are likely to arise. Those inefficient composi-

tions of boxes are encoded by algorithms, and to remove them, we have to first

identify them in the architecture, i.e., we have to find a match of the algorithm

inside the architecture. Before we define a match, we introduce some auxiliary

definitions, which are used to identify the internal objects (boxes, ports, param-

eters and connectors) of an algorithm.

Definition: Let Conns, Params and Ports be the functions defined below. For

an algorithm or architecture A:

Conns(A) = {c ∈ connectors(A) : sport(c) /∈ inputs(A)∧tport(c) /∈ outputs(A)}

Ports(A) =
⋃

b∈elements(A)

(inputs(b) ∪ outputs(b))

Params(A) =
⋃

b∈elements(A)

parameters(b)

Definition: Let Obj be the function defined below. For an algorithm or archi-

tecture A:

Obj(A) = elements(A) ∪ Conns(A) ∪ Ports(A) ∪ Params(A)

Definition: Let P be an architecture or an algorithm contained in an architec-

ture, and A an algorithm. A match is an injective map m : Obj(A)→ Obj(P), such

that:

∀b∈elements(A) name(b) = name(m(b)) (3.1)

∀c∈Conns(A) m(sport(c)) = sport(m(c))

∧ m(tport(c)) = tport(m(c))

∧ m(sbox(c)) = sbox(m(c))

∧ m(tbox(c)) = tbox(m(c)))

(3.2)
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∀p∈Ports(A) name(p) = name(m(p))

∧ (p ∈ ports(b)⇔ m(p) ∈ ports(m(b)))
(3.3)

∀p∈Params(A) name(p) = name(m(p))

∧ (p ∈ parameters(b)⇔ m(p) ∈ parameters(m(b)))
(3.4)

∀p∈Params(A) (value(p) = (C, e))⇒ (value(m(p)) = (C, e)) (3.5)

∀p1,p2∈Params(A) value(p1) = value(p2)⇒ value(m(p1)) = value(m(p2)) (3.6)

∀c∈connectors(P) (sport(c) ∈ Image(m) ∧ tport(c) /∈ Image(m))

⇒ (∃c′∈connectors(A) m(sport(c′)) = sport(c)

∧ tport(c′) /∈ Obj(A))

(3.7)

∀c1,c2∈connectors(A) sport(c1) = sport(c2)

⇒ (∃c′1,c′2∈connectors(P) sport(c′1) = sport(c′2)

∧ tport(c′1) = m(tport(c1))

∧ tport(c′2) = m(tport(c2)))

(3.8)

Image(m) denotes the subset of Obj(P) that contains the values m(x), for any

x in the domain of m, i.e., Image(m) = {m(x) : x ∈ Obj(A)}. Conditions (3.1-3.6)

impose that the map preserves the structure of the algorithm box being mapped

(i.e., the match is a morphism). Condition (3.7) imposes that if an output

port in the image of the match is connected to a port that is not, then the

corresponding output port of the algorithm (preimage) must also be connected

with a port outside the domain of the match.6 Condition (3.8) imposes that if

6This condition is similar to the dangling condition in the double-pushout approach to
graph transformation [HMP01].
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two input ports of the pattern internal boxes are the target of connectors that

have the same source, the same must be valid for the matches of those input

ports (this is an additional condition regarding preservation of structure).

Example: Figure 3.7 depicts a map that does not meet condition

(3.7), and Figure 3.8 depicts a map that does not meet condition

(3.8). Therefore, none of them are matches. A valid match is depicted

in Figure 3.9.

x

Figure 3.7: Example of an invalid match (connector marked x does not meet
condition (3.7)).

x
x

Figure 3.8: Example of an invalid match (connectors marked x should have the
same source to meet condition (3.8)).

Having a match that identifies the boxes that can be optimized, we can apply

an optimizing abstraction to replace the inefficient composition of boxes. This
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Figure 3.9: A match from an algorithm (on top) to an architecture (on bottom).

transformations is defined next.

Definition: Given an architecture or an algorithm (contained in an architec-

ture) P, a rewrite rule (I, A) such that A is an algorithm and

∀p∈inputs(A) ∃c∈connectors(A)(sport(c) = p) ∧ (tport(c) /∈ outputs(A)) (3.9)

and a match m (mapping A in P), an optimizing abstraction of A in P replaces

m(A) with a copy of I (say I′) in P according to the following algorithm:

• Add I′ to elements(P)

• For each p′ ∈ inputs(A),

– Let c′ be a connector such that c′ ∈ connectors(A) ∧ sport(c′) =

p′ ∧ tport(c′) /∈ outputs(A)7

– Let c be a connector such that c ∈ connectors(P) ∧ tport(c) =

m(tport(c′))

– Let p be a port such that p ∈ inputs(I′) ∧ name(p) = name(p′)

– Set tport(c) to p

– Set tbox(c) to I′

(These steps find a connector to link to each input port of I′, and redirect

that connector to I′.)

7Condition 3.9 guarantees that connector c′ exists.
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• For each c ∈ {d ∈ connectors(P) : sport(d) ∈ Image(m) ∧ tport(d) /∈
Image(m)}

– Let c′ be a connector such that c′ ∈ connectors(A) ∧ sport(c) =

m(sport(c′)) ∧ tport(c′) ∈ outputs(A)

– Let p be a port such that p ∈ outputs(I′) ∧ name(p) =

name(tport(c′))

– Set sport(c) to p

– Set sbox(c) to I′

(These steps redirect all connectors for which source port (and box) is to

be removed to an output port of I′.)

• For each p ∈ parameters(I′), if there is a p′ ∈ Params(A), such that

value(p′) = (P , name(p)), update value(p) to value(m(p′)).

(This step takes the values of the parameters of boxes to be removed to

define the values of the parameters of I′.)

• For each box b ∈ m(elements(A)), delete b from elements(P)

• For each connector c ∈ m(Conns(A)), delete c from connectors(P)

• For each connector c ∈ connectors(P), such that tport(c) ∈ Image(m),

delete c from connectors(P)

Example: An application of optimizing abstraction is shown in Fig-

ure 3.10 (it was previously shown when transforming Figure 3.3b to

Figure 3.5a).

3.1.3 Interpretations

A dataflow architecture P may have many different interpretations. The default

is to interpret each box of P as the component it represents. That is, SORT

means “sort the input stream”. We call this the standard interpretation S. The
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(a)

(b)

Figure 3.10: An optimizing abstraction.

standard interpretation of box B is denoted S(B) or simply B, e.g., S(SORT) is

“sort the input stream”. The standard interpretation of a dataflow graph P is

S(P) or simply P.

There are other equally important interpretations of P, which allow us to

predict properties about P, their boxes and ports. ET interprets each box B

as a computation that estimates the execution time of B, given some properties

about B’s inputs. Thus, ET (SORT) is “return an estimate of the execution time

to produce SORT’s output stream”. Each box B ∈ P has exactly the same number

of inputs and outputs as ET (B) ∈ ET (P), but the meaning of each box, as well

as the types of each of its I/O ports, is different.

Essentially, an interpretation associates behavior to boxes, allowing the exe-

cution (or animation) of an architecture to compute properties about it.

Example: ET (ProjectSort) estimates the execution time of

ProjectSort for an input I whose statistics (tuple size, stream

length, etc.) is ET (I). An RDM can be used to forward-engineer

(i.e., derive) all possible implementations from an high-level archi-

tecture specification. The estimated runtime of an architecture P is

determined by executing ET (P). The most efficient architecture de-
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rived from an initial architecture specification is the one with the

lowest estimated cost.

In general, an interpretation I of dataflow graph P is an isomorphic graph

I(P), where each box B ∈ P is mapped to a unique box I(B) ∈ I(P), and each

edge B1 → B2 ∈ P is mapped to a unique edge I(B1) → I(B2) ∈ I(P). Graph

I(P) is identical to P, except that the interpretation of all boxes as computations

are different. Usually edges of an interpretation I have the same direction of

the corresponding edge of the architecture. However, we have found cases where

to compute some property about an architecture it is convenient to invert the

direction of the edges. In that case, an edge B1 → B2 ∈ P maps to a unique edge

I(B1)← I(B2) ∈ I(P). We call such interpretations backward and the others are

forward.

The properties of the ports of a box are stored in a properties map, which is

a map that associates a value to a property name. When computing properties,

each box has a map that associates to each input port a properties map, and

another map that associates to each output port a properties map. Additionally,

there is another properties map, associated with the box itself.

Definition: An interpretation of a box B is a function that has as inputs the list

of additional parameters’ values of B, a map containing a properties maps for each

input port of B and a properties map for box B, and returns a map containing

the properties maps for each output port of B and an update properties map

for box B. (For backward interpretations, input properties are computed from

output properties.)

An interpretation allows the execution of an architecture. Given a box B and

an input port P of B, and let C be a connector, such that tport(C) = P, then the

properties map of P is equal to the properties of sport(C) (i.e., the properties

are shared, and if we change the properties map of sport(C), we change the

properties map of P). A port may be an output port of an interface or primitive

(and in that case its properties map is computed by the interpretation), may

be an input port of an architecture, or there is a connector that has the port
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as target. To compute the properties maps of a port that is the target of a

connector, we compute the properties map of the port that is the source of

the same connector. In case the port is an input port of an architecture, the

properties maps must be provided, as there is no function to compute them, nor

connectors that have the port as target (in the case of forward interpretations).

Given an architecture, the properties maps for its input ports, and interpre-

tations for the boxes the architecture contains, properties maps of all ports and

boxes contained in the architecture are computed executing the interpretations

of the boxes according to their topological order. We do not require acyclic

graphs, which means in some cases the graph may not have a topological order-

ing. In that case, we walk the graph according to the dependencies specified by

the dataflow graph, and when we reach a cycle (a point where all boxes have

unfulfilled dependencies), we try to find the box that is the entry point of the

cycle, which is a box that has some of the dependencies already fulfilled. We

choose to be executed next the ones that have no direct dependencies on other

entry points. If no entry point meets this criteria, we choose to be executed next

all the entry points.

3.1.4 Pre- and Postconditions

Boxes often impose requirements on the inputs they accept, i.e., there are some

properties that inputs and additional parameters must satisfy in order for a box

to produce the expected semantics (e.g., when adding two matrices, they must

have the same size). The requirements on properties of inputs imposed by boxes

define their preconditions, and may be used to validate architectures. We want

to be able to validate architectures during design time, which means that we

need to have the properties needed to evaluate preconditions during design time.

Given properties of inputs, we can use those properties not only to evaluate

box’s preconditions, but also to compute properties about the outputs. Thus,

interfaces have associated to them preconditions, predicates of properties of their

inputs and additional parameters, which specify when the operation specified by

the interface can be used. Additionally, interfaces and primitives have associated
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to them functions that compute the properties of their outputs, given properties

of their inputs and additional parameters.8

The properties of the outputs describe what is known after the execution of

a box, and may be seen as box’s postconditions, i.e., if f computes properties of

output port A, we can say that properties(A) = f is a postcondition of A (or a

postcondition of the box that contains port A).

The pre- and postconditions are essentially interpretations of architectures

that can be used to semantically validate them (assuming they capture all the

expected behavior of a box). We follow this approach, where interpretations are

used to define pre- and postconditions, so that we reuse the same framework

for different purposes (pre- and postconditions, cost estimates, etc.). Also, this

approach simplifies the verification of preconditions (it is done evaluating pred-

icates), and has shown to be expressive enough to model the design constraints

needed in the case studies analysed.

Preserving Correctness During Transformations. In Section 3.1.2, we

described two main kinds of transformations:

• Refinement I→ A, where an interface I is replaced with an algorithm or

primitive A; and

• Optimizing Abstraction A → I, where the dataflow graph of an algo-

rithm A is replaced with an interface I.

Considering those transformations, a question arises: under what circumstances

does a transformation keep the correction of an architecture, regarding the pre-

conditions of the interfaces it uses? A possible answer is based on the Liskov

Substitution Principle (LSP) [LW94], which is a foundation of object-oriented

design. LSP states that if S is a subtype of T, then objects of type S can be

substituted for objects of type T without altering the correctness properties of

a program. Substituting an interface with an implementing object (component)

8Postconditions of algorithms are equivalent to the composition of the postcondition func-
tions of their internal boxes. Thus, algorithms do not have explicit postconditions. The same
holds for architectures.
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is standard fare today, and is an example of LSP [MRT99, Wik13]. The tech-

nical rationale behind LSP is that preconditions for using S are not stronger

than preconditions for T, and postconditions for S are not weaker than that for

T [LW94].

However, LSP is too restrictive for our approach, as we often find imple-

mentations specialized to a subset of the inputs accepted by the interface they

implement (nonrobust implementations [BO92]), and therefore require stronger

preconditions. This is a common situation when defining implementations for

interfaces: for specific inputs there are specialized algorithms that provide better

performance than general ones (a.k.a. robust algorithms [BO92]).

Example: Figure 3.11 shows three implementations for SORT in-

terface: a map-reduce algorithm, a quicksort primitive, and a

do nothing algorithm. do nothing says: if the input stream is al-

ready in sorted order (a precondition for do nothing), then there is

no need to sort. The SORT→ do nothing violates LSP: do nothing

has stronger preconditions than its SORT interface.

Figure 3.11: Two algorithms and a primitive implementation of SORT.

Considering the performance advantages typically associated to nonrobust

implementations, it is convenient to allow implementations to have stronger pre-

conditions than their interfaces. In fact, this is the essence of some optimizations
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in certain domains, where nonrobust implementations are widely used to opti-

mize an architecture to specific program inputs.

Upward Compatibility and Perry Substitution Principle. There are

existing precedences for a solution. Let B1 and B2 be boxes, and pre and post

denote the pre- and postconditions of a box. Perry [Per87] defined that B2 is

upward compatible with B1 if:

pre(B2)⇒ pre(B1) (3.10)

post(B2)⇒ post(B1) (3.11)

i.e., B2 requires and provides at least the same as B1. We call this the Perry

Substitution Principle (PSP).

Allowing an interface to be replaced with an implementation with stronger

preconditions means that a rewrite rule is not always applicable as a refinement.

Before any (I, A) rewrite rule can be applied, we must validate that the A’s

preconditions hold in the graph being transformed. If not, it cannot be applied.

Rewrite rules to be used in optimizing abstraction rewrites A → I have

stronger constraints. An optimizing abstraction implies that a graph A must

implement I, i.e., I→ A. For both constraints to hold, the pre- and postcondi-

tions of A and I must be equivalent:

pre(I)⇔ pre(A) (3.12)

post(I)⇔ post(A) (3.13)

These constraints limit the rewrite rules that can be used when applying an

optimizing abstraction transformation.

Summary. We mentioned before that interfaces have preconditions associated

with them. In order to allow implementation to specify stronger preconditions

than its interfaces, we also have to allow primitive and algorithm boxes to have

preconditions.9 We may also provide preconditions for architectures, to restrict

9Our properties are similar to attributes in an attributed graph [Bun82]. Allowing the
implementations to have stronger preconditions, we may say that the rewrite rules may have
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the inputs we want to accept. As we mentioned before, for algorithms and ar-

chitectures, postconditions are inferred from the postconditions of their internal

boxes, therefore they do not have explicit postconditions. Table 3.1 summarizes

which boxes have explicit preconditions and postconditions.

Box Type Has postconditions? Has preconditions?
Interface Yes Yes
Primitive Yes Yes
Algorithm No Yes
Architecture No Yes

Table 3.1: Explicit pre- and postconditions summary

3.2 Tool Support

In order to support the proposed approach, we developed a tool that materializes

the previous concepts, called ReFlO (REfine, FLatten, Optimize), which models

dataflow architectures as graphs, domain knowledge as graph transformations,

and can interactively/mechanically apply transformations to graphs to synthesize

more detailed and/or more efficient architectures. ReFlO provides a graphical

design tool to allow domain experts to build a knowledge base, and developers to

reuse expert knowledge to build efficient (and correct) program implementations.

In this section we describe the language to specify RDMs, the language to

specify architectures, the transformations that we can apply to architectures,

and how we can define interpretations.

ReFlO is an Eclipse [Eclb] plugin. The modeling languages were specified

using Ecore [Ecla], and the model editors were implemented using GEF [Graa]

and GMF [Grab]. The model transformations and model validation features

were implemented using the Epsilon [Eps] family of languages.

We start by describing the ReFlO features associated with the creation of

an RDM, through which a domain expert can encode and systematize domain

applicability predicates [Bun82] or attribute conditions [Tae04], which specify a predicate over
the attributes of a graph when a match/morphism is not enough to specify whether a trans-
formation can be applied.
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knowledge. Then we describe how developers (or domain experts) can use ReFlO

to specify their programs architectures, the model validation features, and how

to derive an optimized architecture implementation using an RDM specified by

the domain expert. Finally we explain how interpretations are specified in ReFlO.

3.2.1 ReFlO Domain Models

An RDM is created by defining an interface for each operation, a primitive

for each direct code implementation, an algorithm box for each dataflow im-

plementation, and a pattern box for each dataflow implementation that can be

abstracted. Patterns are a special kind of algorithms that not only implement

an interface, but also specify that a subgraph can be replaced by (or abstracted

to) that interface, i.e., ReFlO only tries to apply optimizing abstractions to sub-

graphs that match patterns (they model bidirectional transformations: interface

to pattern / pattern to interface).10

Rewrite rules are specified using implementations (an arrow from an interface

to a non-interface box), through which we can link an interface with a box that

implements it. When an interface is connected to a pattern box, the precondi-

tions/postcondition of the interface and the pattern must be equivalent, to meet

the requirements of the Perry Substitution Principle.

Example: Figure 3.12 depicts two rewrite rules, composed by the

SORT interface, its primitive implementation quicksort, and its

parallel implementation (algorithm parallel sort), which models

one of the rewrite rules that were used to refine the architecture

of Figure 3.1. Figure 3.13 depicts two rewrite rules, composed

by the IMERGESPLIT interface and its implementations (algorithm

ms identity and pattern ms mergesplit), which model the rewrite

rules used to optimize the architecture of Figure 3.3b.

10Graphically, a pattern is drawn using a dashed line, whereas simple algorithms are drawn
using a continuous line. We also remind readers that not all algorithms can be pattern: the
PSP and equation 3.9, impose additional requirements for an algorithms to be used in an
optimizing abstraction.
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Figure 3.12: SORT interface, parallel sort algorithm, quicksort primitive, and
two implementation links connecting the interface with their implementations,
defining two rewrite rules.

Figure 3.13: IMERGESPLIT interface, ms identity algorithm, ms mergesplit

pattern, and two implementation links connecting the interface with the algo-
rithm and pattern, defining two rewrite rules.

The rewrite rules are grouped in layers. Layers have the attribute active to

specify whether their implementations (rewrite rules) may be used when deriving

an architectures or not (i.e., easily allowing a group of rules to be disabled). Ad-

ditionally, layers have the attribute order that contains an integer value. When

deriving an architecture, we can also restrict the rewrite rules to be used to those

whose order is in a certain interval, limiting the set of rules that the ReFlO tries

to apply when deriving architectures, thus improving its performance.11

Rewrite rules must be documented so that others who inspect architecture

derivations can understand the steps that were used to derive it. Boxes, ports

11In some domains it is possible to order layers in such a way that initially we can only
apply rewrite rules from the first layer, then we can only apply rules from a second layer, and
so on. The order attribute allows us to define such an order.
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and layers have the doc attribute, where domain experts can place a textual de-

scription of the model elements. ReFlO provides the ability to generate HTML

documentation, containing the figures of boxes, and their descriptions. This abil-

ity is essential to describe the transformations and elements of an RDM, thereby

providing a form of “documentation” that others could access and explore.

Besides the constraints mentioned in Section 3.1.1, ReFlO adds constraints

regarding names of boxes, ports and additional parameters, which must match

the regular expression [a− zA− Z0− 9 ]+. Additionally, a box can only be the

target of an implementation link.

Figure 3.14 depicts the UML class diagram of the metamodel for RDMs. The

constraints associated with this metamodel have been defined prior to this point.
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Figure 3.14: ReFlO Domain Models UML class diagram.

Figure 3.15 shows the user interface provided by ReFlO. We have a project

that groups files related to a domain, containing folders for RDMs, architectures,

interpretations, documentation, etc. When we have an RDM opened (as show

in Figure 3.15), we also have a pallete on the right with objects and links we

can drag to the RDM file to build it. On the bottom we can see a window that

allows us to set attributes of the selected object.
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Figure 3.15: ReFlO user interface.

3.2.1.1 Additional Parameters

Boxes have the attribute parameters to hold a comma-separated list of names,

data types and values, which specify their additional parameters. Each element

of the list of parameters should have the format name : datatype (if the param-

eter’s value is undefined), or name : datatype = value (if we want to provide a

value). The $ sign is used to specify a value that is a parameter of the parent box

(e.g., x : T = $y, where y is an additional parameter of the parent box, means

that parameter x, of type T, has the same value as y). Additional parameters

keep the models simpler (as they are not graphically visible), allowing developers

to focus on the essential parts of the model.

Example: Consider the algorithm parallel sort, presented in Fig-

ure 3.12. It has an additional parameter, to define the attribute to

use as key when comparing the input tuples. It is specified by the

expression SortKey : Attribute. Its internal box SORT also has an

additional parameter for the same purpose, and which value is equal
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to the value of its parent box (parallel sort). Thus, it is specified

by the expression SortKey : Attribute = $SortKey.

3.2.1.2 Templates

Templates provide a way to easily specify several different rewrite rules that have

a common “shape”, and differ only on the name of the boxes. In that case, the

name of a particular box present in a rewrite rule denotes a variable, and we

use the attribute template of the LHS of the rewrite rule to specify the possible

instantiations of the variables present in the rewrite rule. Templates provide an

elementary form of higher-order transformations [TJF+09] that reduces modeling

effort.

Example: Consider the boxes of Figure 3.16, where F2 = F−11 . We

have the specification of an optimization. Whenever we have a box

F1 followed by a box F2 (algorithm IdF1F2), the second one can be

removed (algorithm IdF1). A similar optimization can be defined for

any pair of boxes (x1, x2), such that x2 = x−11 .

Figure 3.16: Two implementations of the same interface that specify an opti-
mization.

Templates specify all such optimizations with the same set of boxes.

Assuming that G2 = G−11 and H2 = H−11 , we can express the three

different optimizations (that remove box F2, G2, or H2) creating the



58 3. Encoding Domains: Refinement and Optimization

Figure 3.17: Expressing optimizations using templates. The boxes optid, idx1,
idx1x2, x1, and x2 are “variables” that can assume different values.

models depicted in Figure 3.17, and setting the attribute template of

box optid with the value

(optid , idx1, idx1x2, x1, x2) :=

(OptIdF, IdF1, IdF1F2, F1, F2) |
(OptIdG, IdG1, IdG1G2, G1, G2) |
(OptIdH, IdH1, IdH1H2, H1, H2)

The left-hand side of := specifies that optid, idx1, idx1x2, x1, and

x2 are “variables” (not the box names), which can be instantiated

with the values specified on the right-hand side. The symbol | sep-

arates the possible instantiations. For example, when instantiating

the variables with OptIdF, IdF1, IdF1F2, F1 and F2, we get the op-

timization of Figure 3.16.

3.2.1.3 Replicated Elements

Figure 3.12 showed a parallel algorithm for SORT, the parallel sort, where we

execute two instances of SORT in parallel. However, we are not limited to two,

and we could increase parallelism using more instances of SORT. Similarly, the

number of output ports of SPLIT boxes used in the algorithm, as well as the

input ports of SMERGE, may vary.
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ReFlO allows to express this variability in models, using replicated elements.

Ports and boxes have an attribute that specifies their replication. This attribute

should be empty, in case the element is not replicated, or contain an upper

case letter, which is interpreted as a variable that specifies how many times the

element is replicated, and that we refer to as replication variable (this variable

is shown next to the name of the element, inside square brackets).12 Thus, box

B[N] means that there are N instances of box B (Bi, for i = {1...N}). Similarly for

ports.

Example: Using replicated elements, we can express the

parallel sort in a more flexible way, as depicted in Figure 3.18.

Output port O of SPLIT, interface SORT, and input port I of SMERGE

are replicated N times. Notice that we used the same value (N) in

all elements, meaning that they are replicated the same number of

times.

Figure 3.18: parallel sort algorithm modeled using replicated elements.

Example: We may have elements that can be replicated a different

number of times, as in the case of the interface IMERGESPLIT and its

implementations, msnm mergesplit and msnm splitmerge, depicted

in Figure 3.19. Here, the interface has N inputs and M outputs. Inside

the patterns we also have some elements replicated N times, and oth-

ers replicated M times. The scope of these variables is formed by all

connected boxes, which means that N and M used in the algorithms

are the same used in the interface they implement. This is impor-

tant in transformations, as we have to preserve these values, i.e., the

12These variables can be instantiated when generating code.
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replication variables of the elements to remove during a transforma-

tion are used to determine the replication variables of the elements

to add. More on this in Section 3.2.4.

Figure 3.19: IMERGESPLITNM interface, and its implementations
msnm mergesplit and msnm splitmerge, modeled using replicated elements.

ReFlO has specific rules for replicating connectors (i.e., connectors linking

replicated ports or ports of replicated boxes). Using the notation B.P to represent

port P of box B, given a connector from output port O of box B to input port I

of box C, the rules are:

• When O is replicated N times and B is not (which implies that either I or C

is also replicated N times), connectors link B.Oi to C.Ii or Ci.I (depending

on which is replicated), for i ∈ {1 . . . N}.

• When B is replicated N times and O is not (which implies that either I or C

is also replicated N times), connectors link Bi.O to C.Ii or Ci.I (depending

on which is replicated), for i ∈ {1 . . . N}.

• When B is replicated N times and O is replicated M times (which implies that

both C and I are also replicated), connectors link Bi.Oj to Cj.Ii, thereby

implementing a crossbar, for i ∈ {1 . . . N} and j ∈ {1 . . . M} (this also

implies that C is replicated M times, and I is replicated N times).

Example: According to these rules, the pattern msnm splitmerge

from Figure 3.19 results in the pattern depicted in Figure 3.20, when
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N is equal to 2 and M is equal to 3. Notice the crossbar in the mid-

dle, resulting from a connector that was linking replicated ports of

replicated boxes.

Figure 3.20: msnm splitmerge pattern without replication.

3.2.2 Program Architectures

An architecture models a program that, with the help of an RDM, can be op-

timized to a specific need (such as a hardware platform). We use a slightly

different metamodel to express architectures. Figure 3.21 depicts the UML class

diagram of the metamodel for architectures.
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Figure 3.21: Architectures UML class diagram.

To model a program, we start with an architecture box specifying its inputs
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and outputs, and a possible composition of interfaces that produces the desired

behavior. We may use additional parameters to model some of the inputs of the

program. As in RDMs, architectures may contain replicated elements.

Example: Several architectures were previously shown (e.g., Fig-

ure 3.1, 3.3a, and 3.5).

3.2.3 Model Validation

ReFlO provides the ability to validate RDMs and architectures, checking if they

meet the metamodel constraints. It checks whether the boxes have valid names,

whether the ports and parameters are unique and have valid names, and whether

inherited parameters are valid. Additionally, it also checks whether the ports

have the needed connectors, whether the connectors belong to the right box, and

whether the replication variables of connected ports and boxes are compatible.

For RDMs, it also checks whether primitives and algorithms implement an

interface, and whether they have the same ports and additional parameters of

the interface they implement.

3.2.4 Model Transformations

ReFlO provides transformations to allow us to map architectures to more efficient

ones, optimized for particular scenarios. When creating an architecture, we

associate an RDM to it. The RDM specifies the transformations that we are

able to apply to the architecture. At any time during the mapping process, we

have the freedom to add new transformations to the RDM, which we want to

apply, but that are not available yet.

The transformations that can be applied to boxes inside an architecture are

described below:

Refine replaces an user selected interface with one of its implementations.

ReFlO examines the rewrite rules in order to determine which ones meet
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the constraints described in Section 3.1.4. Then, a list of valid implemen-

tations is shown to the user, for him to choose one (if only one option is

available, it is automatically chosen). If either the interface or its ports are

replicated, that information is preserved (i.e., the replication variables of

the interface are used to define the replication variable of the implementa-

tion). If the implementation has replication variables that are not present

in the interface being refined, the user is asked to provide a value for the

variable.13

Example: Using the rewrite rule presented in Figure 3.18 to

refine the architecture of Figure 3.1, the user is asked to provide

a value for replication variable N, and after providing the value

Y, the architecture of Figure 3.22 is obtained.

Figure 3.22: Architecture ProjectSort, after refining SORT with a parallel im-
plementation that use replication.

Flatten removes the modular boundaries of the selected algorithm. If the al-

gorithm to be flattened was replicated, this information is pushed down to

its internal boxes.14

Find Optimization locates all possible matches for the patterns in the RDM

that exist inside a user selected algorithm or architecture. The interfaces

that are part of matches are identified setting their attribute label, which

is shown after their name.

13We could also keep the value used in the RDM. However, in some cases we want to use
different values when refining different instances of an interfaces (with the same algorithm).

14We do not allow the flattening of replicated algorithms that contain replicated boxes, as
this would require multidimensional replication.
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Example: Applying the find optimization to the architecture

of Figure 3.3b results in the architecture of Figure 3.23, where

we can see that two boxes are part of a match (of pattern

ms mergesplit).

Figure 3.23: Matches present in an architecture: the label shown after the name
of boxes MERGE and SPLIT specifies that they are part of a match of pattern
ms mergesplit (the number at the end is used to distinguish different matches
of the same pattern, in case they exist).

Abstract applies an optimizing abstraction to an architecture, replacing the

selected boxes with the interface they implement. If only a box is selected,

ReFlO checks which interface is implemented by that box, and uses it to

replace the selected box. If a set of interfaces is selected, ReFlO tries to

build a match from the existing patterns in the RDM to the selected boxes.

If the selected boxes do not match any pattern, the architecture remains

unchanged. If the selected boxes match a pattern, they are replaced with

the interface the pattern implements. Otherwise, if more than one pattern

is matched, the user is asked to choose one, and the selected boxes are

replaced with the interface that the chosen pattern implements. During

the transformation, the values of the replication variables of the subgraph

are used to define the replication variables of the new interface. Unlike

in refinements, no preconditions check is needed to decide whether a pat-

tern can be replaced with the interface. However, to decide whether the

selected boxes are an instance of the pattern A we need to put the modular

boundaries of A around the boxes, and verify if A’s preconditions are met.

That is, it is not enough to verify if the selected boxes have the “shape” of

the pattern.
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Optimize performs an optimizing abstraction, refinement and flattening as a

single step, replacing the selected set of boxes with an equivalent imple-

mentation.

Example: Applying the optimize transformation to the archi-

tecture of Figure 3.24a, to optimize the composition of boxes

MERGE− SPLIT, using the optimization from Figure 3.19, we get

the architecture of Figure 3.24b. Notice that during the transfor-

mation the replication variables of the original architecture are

preserved in the new architecture, i.e., the boxes being replaced

in the original architecture used X and Y instead of N and M (see

Figure 3.19), therefore the new architecture also uses X and Y

instead of N and M.

(a)

(b)

Figure 3.24: Optimizing a parallel version of the ProjectSort architecture.

Expand expands replicated boxes and ports of an architecture. For each repli-

cated box, a copy is created. For each replicated port, a copy is created,

and the suffixes 1 and 2 are added to the names of the original port and its

copy, respectively (as two port cannot have the same name). Connectors

are copied according to the rules previously defined.

Example: Figure 3.25 depicts the application of the expansion

transformation to the architecture of Figure 3.24b.
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Figure 3.25: Expanding the parallel, replicated version of ProjectSort.

3.2.5 Interpretations

Each interpretation is written in Java. For a given interpretation, and a given

box, a Java class must be provided by the domain expert. Every interpreta-

tion is represented by a collection of classes—one per box—that is stored in a

unique Java package whose name identifies the interpretation. Thus if there are

n interpretations, there will be n Java packages provided by the domain expert.

compute() : void
getAddParam(paramName : String) : String
getBoxProperty(name : String) : Object
getParentProperty(name : String) : Object
getInputProperty(port : String, name : String) : Object
getOutputProperty(port : String, name : String) : Object
setBoxProperty(name : String, value : Object) : void
setParentProperty(name : String, value : Object) : void
setInputProperty(port : String, name : String, value : Object) : void
setOutputProperty(port : String, name : String, value : Object) : void
addError(errorMsg : String) : void

 
AbstractInterpretation

Figure 3.26: The AbstractInterpretation class.

Each class has the name of its box, and must extend abstract class

AbstractInterpretation provided by ReFlO (see Figure 3.26). Interpretations

grow in two directions: (i) new boxes can be added to the domain, which re-

quires new classes to be added to each package, and (ii) new interpretations can

be added, which requires new packages.

The behavior of an interpretation is specified in method compute. It com-

putes and stores properties that are associated with its box or ports. For each

box/port, properties are stored in a map that associates a value with a prop-

erty identifier. AbstractInterpretation provides get and set methods for

accessing and modifying properties.
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AbstractInterpretation

int1.BoxA int1.BoxB int2.BoxA int2.BoxB

(a)

AbstractInterpretation

int1.BoxA

int1.BoxB int2.BoxBint2.BoxA

int2.Super

(b)

Figure 3.27: Class diagrams for two interpretations int1 and int2.

A typical class structure for interpretations is shown in Figure 3.27a, where

all classes inherit directly from AbstractInterpretation. Nevertheless, more

complex structures arise. For example, one interpretation may inherit from an-

other (this is common when defining preconditions, as an algorithm has the same

preconditions of the interface it implements, and possibly more), or there may

be an intermediate class that implements part (or all) of the behavior of several

classes (usually of the same interpretation), as depicted in Figure 3.27b. Besides

requiring classes to extend AbstractInterpretation, ReFlO allows developers

to choose the most convenient class structure for the interpretation at hand. We

considered the development of a domain-specific language to specify interpre-

tations. However, by relying in Java inheritance, the presented approach also

provides a simple and expressive mechanism to specify interpretations.

Although ReFlO expects a Java class for each box, if none is provided, ReFlO

automatically selects a default class, with an empty compute method. That is,

in cases where there are no properties to set, no class needs to be provided.

Example: ReFlO generates complete executables in M2T inter-

pretations; thus interface boxes may have no mappings to code.

Example: Interpretations that set a property of ports usually do

not need to provide a class for algorithms, as the properties of their

ports are set when executing the compute methods of their internal

boxes. This is the case of interpretations that compute postcondi-

tions, or interpretations that compute data sizes. However, there are
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cases where properties of an algorithm cannot be inferred from its

internal boxes. A prime example is the do nothing algorithm—it

has preconditions, but its internals suggest nothing. (In such cases,

a Java class is written for an algorithm to express its preconditions.)

ReFlO executes an interpretation in the following way: for each box in a graph,

its compute method is executed, with the execution order being determined

by the topological order of the boxes (in the case of hierarchical graphs, the

interpretation of an algorithm box is executed before the interpretations of its

internal boxes).15 After execution, a developer (or ReFlO tool) may select any

box and examine its properties.

Composition of Interpretations. Each interpretation computes certain

properties of a program P, and it may need properties that are also needed

by other interpretations, e.g., to estimate the execution cost of a box, we may

need an estimate of the volume of data output by a box. The same property

(volume of data) may be needed for other interpretations (e.g., preconditions).

Therefore, it is useful to separate the computation of each property, in order to

improve interpretation modularity and reusability.

ReFlO supports the composition of interpretations, where two or more in-

terpretations are executed in sequence, and an interpretation has access to the

properties computed by previously executed interpretations. For example, an

interpretation to compute data sizes (DS) can be composed with one that forms

cost estimates (ET ) to produce a compound interpretation (ET ◦ DS)(P) =

ET (P)◦DS(P). The same interpretation DS can be composed (reused) with any

other interpretation that also needs data sizes. PRE ◦POST is a typical exam-

ple where different interpretations are composed. In Section 4.2.4.3 we also show

how this ability to compose interpretations is useful when adding new rewrite

rules to an RDM.

15Backward interpretations reverse the order of execution, that is, a box is executed before
its dependencies, and internal boxes are executed before their parent boxes.



Chapter 4

Refinement and Optimization

Case Studies

We applied the proposed methodology in different case studies from different

application domains, to illustrate how the methodology and tools can be used to

help developers deriving optimized program implementations in those domains,

and how we can make the derivation process understandable for non-experts

by exposing complex program architectures as a sequence of small incremental

transformations applied to an initial high-level program architecture.

In this chapter we present case studies from the relational databases and DLA

domains. First we describe simple examples, based on the equi-join relational

database operation, which is well-known for computer scientists, and therefore

can be easily appreciated by others. Then we describe more complex examples

from the DLA domain, where we show how we map the same initial architecture

(PIM) to architectures optimized for different hardware configurations (PSMs).

4.1 Modeling Database Operations

In this section we show how optimized programs from the relational databases

domain are derived. We start by presenting a detailed analysis of the derivation

of a Hash Join parallel implementation [GBS14], and its interpretations. Then

69
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we present a more complex variation of the Hash Join derivation.

4.1.1 Hash Joins in Gamma

Gamma was (and perhaps still is) the most sophisticated relational database

machine built in academia [DGS+90]. It was created in the late 1980s and

early 1990s without the aid of modern software architectural models. We focus

on Gamma’s join parallelization, which is typical of modern relational database

machines, and use ReFlO screenshots to incrementally illustrate Gamma’s deriva-

tions.

4.1.1.1 Derivation

A hash join is an implementation of a relational equi-join; it takes two streams

of tuples as input (A and B), and produces their equi-join A on B as output (AB).

Figure 4.1 is Gamma’s PIM. It just uses the HJOIN interface to specify the desired

behavior.

Figure 4.1: The PIM: Join.

Figure 4.2: bloomfilterhjoin algorithm.

The derivation starts by re-

fining the HJOIN interface with

its bloomfilterhjoin implemen-

tation, depicted in Figure 4.2.

The bloomfilterhjoin algorithm

makes use of Bloom filters [Blo70]

to reduce the number of tuples to

join. It uses two new boxes: BLOOM (to create the filter) and BFILTER (to apply

the filter). Here is how it works: the BLOOM box takes a stream of tuples A as

input and outputs exactly the same stream A along with a bitmap M. The BLOOM

box first clears M. Each tuple of A is read, its join key is hashed, the correspond-
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ing bit (indicated by the hash) is set in M, and the A tuple is output. After all A

tuples are read, M is output. M is the Bloom filter.

The BFILTER box takes Bloom filter M and a stream of tuples A as input, and

eliminates tuples that cannot join with tuples used to build the Bloom filter.

The algorithm begins by reading M. Stream A is read one tuple at a time; the A

tuple’s join key is hashed, and the corresponding bit in M is checked. If the bit

is unset, the A tuple is discarded as there is no tuple to which it can be joined.

Otherwise the A tuple is output. A new A stream is the result.

Finally, output stream A of BLOOM and output stream A of BFILTER are joined.

Given the behaviors of the BLOOM, BFILTER, and HJOIN boxes, it is easy to prove

that bloomfilterhjoin does indeed produce A on B [BM11].

After applying the refinement transformation, we obtain the architecture de-

picted in Figure 4.3. The next step is to parallelize the BLOOM, BFILTER, and

HJOIN operations by refining each with their map-reduce implementations.

Figure 4.3: Join architecture, using Bloom filters.

Figure 4.4: parallelhjoin algorithm.

The parallelization of HJOIN is

textbook [BFG+95]: both input

streams A, B are hash-split on their

join keys using the same hash func-

tion. Each stream Ai is joined with

stream Bi (i ∈ {1, 2}), as we know

that Ai on Bj = ∅ for all i 6= j (equal

keys must hash to the same value).

By merging the joins of Ai on Bi (i ∈ {1, 2}), A on B is produced as output. This

parallel implementation of HJOIN is depicted in Figure 4.4.
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Figure 4.5: parallelbloom algorithm.

The BLOOM operation is paral-

lelized by hash-splitting its input

stream A into substreams A1, A2, cre-

ating a Bloom filter M1, M2 for each

substream, coalescing A1, A2 back

into A, and merging bit maps M1, Mn

into a single map M. This parallel

implementation of BLOOM is depicted in Figure 4.5.

Figure 4.6: parallelbfilter algorithm.

The BFILTER operation is par-

allelized by hash-splitting its in-

put stream A into substreams A1, A2.

Map M is decomposed into submaps

M1, M2 and substream Ai is filtered

by Mi. The reduced substreams

A1, A2 output by BFILTER are coa-

lesced into stream A. This parallel implementation of BFILTER is depicted in

Figure 4.6.

After applying the transformation, we obtain the architecture depicted in

Figure 4.7. We reached the point where refinement is insufficient to obtain the

Gamma’s optimized implementation.

Figure 4.7: Parallelization of Join architecture.

The architecture depicted in Figure 4.7 (after flattened) exposes three se-

rialization bottlenecks, which degrade performance. Consider the MERGE of

substreams A1, A2 (produced by BLOOM) into A, followed by a HSPLIT to re-

construct A1, A2. There is no need to materialize A: the MERGE − HSPLIT

composition can also be implemented by the identity map: Ai → Ai.
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Figure 4.8: Optimization rewrite rules for MERGE−
HSPLIT.

The same applies for the

MERGE − HSPLIT composi-

tion for collapsing and recon-

structing substreams pro-

duced by BFILTER. The

transformations required to

remove these bottlenecks are

encoded in the rewrite rules

depicted in Figure 4.8. The

removal of MERGE − HSPLIT

compositions eliminates two

serialization bottlenecks.

Figure 4.9: Optimization rewrite rules for MMERGE−
MSPLIT.

The third bottleneck

combines maps M1, M2 into M,

and then decomposes M back

into M1, M2. The MMERGE −
MSPLIT composition can also

be implemented by an iden-

tity map: Mi → Mi. This

optimization removes the

MMERGE − MSPLIT boxes and

reroutes the streams appropriately. It is encoded by the rewrite rules depicted

in Figure 4.9.

Figure 4.10: Join architecture’s bottlenecks.

Using the Find Optimization tool available in ReFlO, the bottlenecks are

identified, as depicted in Figure 4.10. These bottlenecks can be removed using

optimizations, which replace the inefficient compositions of operations by iden-

tities. Doing so, we obtain the optimized architecture depicted in Figure 4.11.
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Figure 4.11: Optimized Join architecture.

This step finishes the core of the derivation. An additional step is needed.

The current architecture is specified using interfaces, thus, we still have to choose

the code implementation for each operation, i.e., we have to refine the architec-

ture replacing the interfaces with primitive implementations. This additional

step yields the architecture depicted in Figure 4.12, the PSM of Gamma’s Hash

Join. Later in Section 4.1.2 we show further steps for the derivation of optimized

Hash Join implementations in Gamma.

Figure 4.12: The Join PSM.

4.1.1.2 Preconditions

In Section 3.1 (Figure 3.13) we shown an optimization for the composition

MERGE − SPLIT. In the previous section we presented a different optimization

for composition MERGE − HSPLIT. The differences between these optimizations

go beyond the names of the boxes.

IMERGESPLIT interface models an operation that only requires the union of

the output streams to be equal to the union of the input streams. This happens

as the SPLIT interface does not guarantee that a particular tuple will always

be assigned to the same output. However, HSPLIT always sends the same tuple
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to the same output, and it has postconditions regarding the hash values of the

tuples of each output, which specify (i) a certain field was used to hash-split

the tuples, and (ii) that the outputs of port Ai, after being hashed, were as-

signed to substream of index i. The same postconditions are associated with

pattern mhs mergehsplit. Also note that pattern mhs mergehsplit needs an

additional parameter (SplitKey), which specifies the attribute to be used when

hash-splitting the tuples (and that is used to define the postconditions).

As required by the PSP, the postconditions of the dataflow graph to be

abstracted (pattern mhs mergehsplit) have to be equivalent to the postcon-

ditions of the interface it implements, thus, interface IMERGEHSPLIT also must

provide such postconditions. Through the use of the HSPLIT boxes, pattern

mhs hsplitmerge provides such postconditions.

IMERGEHSPLIT has one more implementation, mhs identity, that imple-

ments the interface using identities. The only way to guarantee that the outputs

of the identity implementation have the desired postconditions (properties), is to

require their inputs to already have them (as properties are not changed inter-

nally). Therefore, the mhs identity algorithm needs preconditions. This algo-

rithm can only be used if the input substreams are hash-split using the attribute

specified by SplitKey (that is also an additional parameter of mhs identity),

and if input Ai contains the substream i produced by the hash-split operation.

Specifying Postconditions. To specify postconditions, we use the following

properties: HSAttr is used to store the attribute used to hash-split a stream, and

HSIndex is used to store the substream to which the tuples were assigned. For

each box, we need to specify how these properties are affected. For example, the

HSPLIT interface sets such properties. On the other hand, MERGE removes such

properties (sets them to empty values). Other boxes, such as BLOOM and BFILTER

preserve the properties of the inputs (i.e., whatever is the property of the input

stream, the same property is used to set the output stream). In Figure 4.13 we

show the code used to specify these postconditions for some of the boxes used,

which is part of the interpretation hash.
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public class HSPLIT extends AbstractInterpretation {
public void compute() {
String key = getAddParam("SplitKey");
setOutputProperty("A1","HSAttr",key);
setOutputProperty("A2","HSAttr",key);
setOutputProperty("A1","HSIndex",1);
setOutputProperty("A2","HSIndex",2);

}
}

public class MERGE extends AbstractInterpretation {
public void compute() {
// by default, properties have the value null
// thus, no code is needed

}
}

public class BFILTER extends AbtractInterpretation {
public void compute() {
String attr=(String)getInputProperty("A","HSAttr");
setOutputProperty("A","HSAttr",attr);
Integer index=(Integer)getInputProperty("A","HSIndex");
setOutputProperty("A","HSIndex",index);

}
}

Figure 4.13: Java classes for interpretation hash, which specifies database oper-
ations’ postconditions.

Specifying Preconditions. Now we have to specify the preconditions of

mhs identity. Here, we have to read the properties of the inputs, and check

if they have the desired values. That is, we need to check if the input streams

are already hash-split, and if the same attribute was used as key to hash-split

the streams. We do that comparing the value of the property HSAttr with the

value of the additional parameter SplitKey. Moreover, we also need to verify

if the tuples are associated with the correct substreams. That is, we need to

check if the property HSIndex of inputs A1 and A2 are set to 1 and 2, respec-

tively. If these conditions are not met, the method addError is called to signal

the failure in validating the preconditions (it also defines an appropriate error

message). In Figure 4.14 we show the code we use to specify the preconditions

for the mhs identity, which is part of the interpretation prehash.
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public class mhs_identity extends AbstractInterpretation {
public void compute() {

String key=getAddParam("SplitKey");
String hsAttrA1= (String)getInputProperty("A1","HSAttr");
String hsAttrA2= (String)getInputProperty("A2","HSAttr");
Integer hsIndexA1= (Integer)getInputProperty("A1","HSIndex");
Integer hsIndexA2= (Integer)getInputProperty("A2","HSIndex");
if(!key.equals(hsAttrA1) || !key.equals(hsAttrA2)

|| hsIndexA1 != 1 || hsIndexA2 != 2) {
addError("Input streams are not correctly split!");

}
}

}

Figure 4.14: Java classes for interpretation prehash, which specifies database
operations’ preconditions.

4.1.1.3 Cost Estimates

During the process of deriving a PSM, it is useful for the developers to be able

to estimate values of quality attributes they are trying to improve. This is a

typical application for interpretations.

For databases, estimates for execution time are computed by adding the

execution cost of each interface or primitive present in a graph. The cost of an

interface or primitive is computed based on the size of the data being processed.

An interface cost is set to that of its most general primitive implementation. It is

useful to associate costs to interfaces (even though they do not have direct code

implementations), as this allows developers to estimate execution time costs at

early stages of the derivation process.

Size estimates are used to build a cost expression representing the cost of

executing interfaces and primitives. The size interpretation takes estimates

of input data sizes and computes estimates of output data sizes. We build a

string containing a cost symbolic expression, as during design time we do not

have concrete values for properties needed to compute costs. Thus, we associate

a variable (string) to those properties, and we use those strings to build the

symbolic expression representing the costs. phjoin is executed by reading each

tuple of stream A and storing it in a main-memory hash table (cHJoinAItem is

a constant that represents the cost of processing a tuple of stream A), and then
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each tuple of stream B is read and joined with tuples of A (cHJoinBItem is a

constant that represents the cost of processing a tuple of stream B). Thus, the

cost of phjoin is given by sizea∗cHJoinAItem+sizeb∗cHJoinBItem. As HJOIN

can always be implemented by phjoin, we can use the same cost expression for

HJOIN. Figure 4.15 shows the code used to generate a cost estimate for phjoin

primitive, which is part of the interpretation costs. The costs interpretation

is backward, as the costs of an algorithm are computed from the costs of its

internal boxes (i.e., we need to compute costs of internal boxes first). So the

costs are progressively sent to their parent boxes, until they reach the outermost

box, where the costs of all boxes are aggregated, providing a cost estimate for

the entire architecture. Figure 4.16 shows the code used by interpretations of

algorithm boxes, which simply add their costs to the aggregated costs stored on

their parent boxes.

public class phjoin extends AbstractInterpretation {
public void compute() {
String sizeA=(String)getInputProperty("A","Size");
String sizeB=(String)getInputProperty("B","Size");
String cost="("+sizeA+") * cHJoinAItem + ("

+sizeB+") * cHJoinBItem";
setBoxProperty("Cost",cost);
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Figure 4.15: Java classe for interpretation costs, which specifies phjoin’s cost.

public class Algorithm extends AbstractInterpretation {
public void compute() {
String cost=(String) getBoxProperty("Cost");
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Figure 4.16: Java class that processes costs for algorithm boxes.
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4.1.1.4 Code Generation

The final step of a derivation is the M2T transformation to generate the code

from the PSM.

ReFlO provides no hard-codedM2T capability; it uses a code interpretation

instead. Figure 4.18 depicts the code that is generated from the architecture of

Figure 4.17 (a PSM obtained refining the architecture from Figure 4.3 directly

with primitives).

Figure 4.17: Join architecture, when using bloomfilterhjoin refinement only.

import gammaSupport.*;
import basicConnector.Connector;

public class Gamma extends ArrayConnectors implements GammaConstants {
public Join(Connector inA, Connector inB, int joinkey1, int joinkey2,

Connector outAB) throws Exception {
Connector c1 = outAB;
Connector c2 = inA;
Connector c3 = inB;
Connector c4 = new Connector("c4");
Connector c5 = new Connector("c5");
Connector c6 = new Connector("c6");
int pkey1= joinkey1;
int pkey2= joinkey2;
new Bloom(pkey1, c2, c5, c4);
new BFilter(pkey2, c3, c6, c4);
new HJoin(c5, c6, pkey1, pkey2, c1);

}
}

Figure 4.18: Code generated for an implementation of Gamma.

We use a simple framework, where primitive boxes are implemented by a

Java class, which provides a constructor that receives as parameters the input

and output connectors, and the additional parameters. Those classes extend

interface Runnable, and the behavior of the boxes is specified by method run.

Code generation is done by first using interpretations that associate a unique

identifier to each connector, which is then used to define the variables that will
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store the connector in the code being generated. Then, each box generates a line

of code that calls its constructor with the appropriate connector’s variables as

parameters (the identifiers previously computed provide this information), and

sends the code to its parent box (see Figure 4.19).

public class HJOIN extends AbstractInterpretation {
public void compute() {
String keyA=getAddParam("JoinKeyA");
String keyB=getAddParam("JoinKeyB");
Integer inA=(Integer)getInputProperty("A", "VarId");
Integer inB=(Integer)getInputProperty("B", "VarId");
Integer outAB=(Integer)getOutputProperty("AB","VarId");
String pCode=(String)getParentProperty("Code");
if(pCode==null) pCode="";
pCode="\t\tnew HJoin(c" + inA + ", c" + inB + ", p" +

keyA + ", p" + keyB + ", c" + outAB + ");\n" + pCode;
setParentProperty("Code", pCode);

}
}

Figure 4.19: Interpretation that generates code for HJOIN box.

Similarly to cost estimates, this is a backward interpretation, and the ar-

chitecture box will eventually gather those calls to the constructors. As a final

step, the interpretation of the architecture box is executed, and adds the variable

declarations, and the class declaration.

4.1.2 Cascading Hash Joins in Gamma

In the previous section we showed how to derive an optimized implementation

for a single Hash Join operation. However, Figure 4.12 is not the last word on

Gamma’s implementation of Hash Joins. We now show how we can go further,

and derive an optimized implementation for cascading joins, where the output

of one join becomes the input of another. Moreover, in this derivation we make

use of replication, to produce an implementation that offers a flexible level of

parallelization. The initial PIM is represented in the architecture of Figure 4.20.

As for the previous derivation, we start by refining HJOIN interfaces with its

bloomfilterhjoin implementation. The next step is again to parallelize the

interfaces present in the architecture (BLOOM, BFILTER and HJOIN). This step is,
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Figure 4.20: The PIM: CascadeJoin.

Figure 4.21: Parallel implementation of database operations using replication.

however, slightly different from the previous derivation, as we are going to use

replication to define the parallel algorithms. Figure 4.21 shows the new parallel

algorithms.

After using these algorithms to refine the architecture, and flattening it, we

are again at the point where we need to apply optimizations to remove the

serialization bottlenecks. Like in the parallel algorithm implementations, we

have to review the optimizations, to take into account replication. Figure 4.22

shows the new rewrite rules that specify replicated variant of the optimizations

needed.
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Figure 4.22: Optimization rewrite rules using replication.

This allow us to obtain the architecture depicted in Figure 4.23, which is

essentially a composition of two instances of the architecture presented in Fig-

ure 4.11 (also using replication).

Figure 4.23: CascadeJoin after refining and optimizing each of the initial HJOIN
interface.

This architecture further shows the importance of deriving the architectures,

instead of just using a pre-built optimized implementation for the operations

present in the initial PIM (in this case, HJOIN operations). The use of the op-

timized implementations for HJOIN would have resulted in an implementation

equivalent to the one depicted in Figure 4.23. However, when we compose two

(or more) instances of HJOIN, new opportunities for optimization arise. In this

case, we have a new serialization bottleneck, formed by a composition of boxes

MERGE (that merges the output streams of the first group of HJOINs) and HSPLIT

(that hash-splits the stream again). Unlike the bottlenecks involving MERGE and
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HSPLIT previously described, cascading joins use different keys to hash the tu-

ples, so the partitioning of the stream before the merge operation is different from

the partitioning after the hash-split operation. Moreover, the number of inputs

of merge operation may be different from the number of outputs of hash-split

operation (note that two different replication variables are used in the architec-

ture of Figure 4.23), which does not match the pattern mhs mergehsplit (see

Figure 4.22).

Figure 4.24: Additional optimization’s rewrite rules.

Therefore, we need

new rewrite rules, to de-

fine how this bottleneck

can be abstracted and im-

plemented in a more effi-

cient way. We define in-

terface IMERGEHSPLITNM,

which models an opera-

tion that merges N input

substreams, and hash-splits the result in M output substreams, according to a

given split key attribute. There are two ways of implementing this interface. We

can merge the input substreams, and then hash-split the resulting stream, using

the algorithm mhsnm mergehsplit depicted in Figure 4.24. The dataflow graph

used to define this implementation matches the dataflow subgraph that repre-

sents the bottleneck we want to remove. An alternative implementation swaps

the order in which operations MERGE and HSPLIT are applied, i.e., each input

substream is hash-split into M substreams by one of the N instances of HSPLIT,

and the resulting substreams are sent to each of the M instances of MERGE. The

substreams with the same hash values are then merged. This behavior is imple-

mented by algorithm mhsnm hsplitmerge, depicted in Figure 4.24.

After applying this optimization, we obtain the architecture from Figure 4.25.

This derivation would be concluded replacing the interfaces with primitive im-

plementations.1

1For simplification, we will omit this step in this and future derivations.
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Figure 4.25: Optimized CascadeJoin architecture.

Recap. In this section we showed how we used ReFlO to explain the design

of Gamma’s Hash Join implementations. This was the first example of a non-

trivial derivation obtained with the help of ReFlO, which allow us to obtain the

Java code for the optimized parallel hash join implementation. This work has

also been used to conduct controlled experiments [FBR12, BGMS13] to evaluate

whether a derivational approach for software development, as proposed by DxT,

has benefits regarding program comprehension and easy of modification. More

on this in Chapter 7.

4.2 Modeling Dense Linear Algebra

In this section we illustrate how DxT and ReFlO can be used to derive optimized

programs in the DLA domain. We start by showing the derivation of unblocked

implementations from high-level specifications of program loop bodies (as they

contain the components that we need to transform). We take two programs from

the domain (LU factorization and Cholesky factorization), and we start building

the RDM at the same time we produce the derivations. We also define the in-

terpretations, in particular pre- and postconditions. At some point, we will have

enough knowledge in the RDM to allow us to derive optimized implementations

for a given target hardware platform.

Later, we add support for other target platforms or inputs. We keep the

previous data, namely the RDM and the PIMs, and we incrementally enhance

the RDM to support the new platform. That is, we add new rewrite rules—new

algorithms, new interfaces, new primitives, etc.—, we add new interpretations,

and we complete the previous interpretations to support the new boxes. The

new rewrite rules typically define new implementations specialized for a certain
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platform (e.g., implementations specialized for distributed matrices). Precondi-

tions are used to limit the application of rewrite rules when a certain platform

is being targeted.

The rewrite rules we use are not proven correct, but, even though they have

not been systematized before, they are usually well-known to experts.

In the next section we show the PIMs for LU factorization and Cholesky

factorization. We then show how different implementations (unblocked, blocked,

and distributed memory) are obtained from the PIMs, by incrementally enhanc-

ing the RDM (see Figure 4.26 for the structure of this section).

PIM
(Section 4.2.1)

Unblocked
(Section 4.2.2)

Blocked
(Section 4.2.3)

Dist. Memory
(Section 4.2.4)

Figure 4.26: DLA derivations presented.

4.2.1 The PIMs

We use the algorithms presented in Section 2.3.1 (Figure 2.6 and Figure 2.7)

to define our initial architectures (PIMs). The most important part of these

algorithms is their loop body, and it is this part that has to be transformed to

adapt the algorithm for different situations. Therefore, the architectures we use

express the loop bodies of the algorithms only.

4.2.1.1 LU Factorization

Figure 4.27: The PIM: LULoopBody.
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Figure 4.27 depicts the architecture LULoopBody, the initial architecture for

LU factorization (its PIM). The loop body is composed of the following sequence

of operations:

• LU : A11 = LU(A11)

• TRS : A21 = A21 TriU(A−111 )

• TRS : A12 = TriL(A−111 ) A12

• MULT : A22 = A22 - A21 A12

The LU interface specifies an LU factorization. The TRS interface specifies

an inverse-matrix product B = coeff · op(A−1) · B or B = coeff · B · op(A−1),

depending on the value of its additional parameter side. trans, tri, diag,

and coeff are other additional parameters of TRS. trans specifies whether the

matrix is transposed or not (op(A) = A or op(A) = AT). A is assumed to be

a triangular matrix, and tri specifies whether it is lower or upper triangular.

Further, diag specifies whether the matrix is unit triangular or not. In the case

of the first TRS operation listed above, for example, the additional parameters

side, tri, trans, diag and coeff have values RIGHT, UPPER, NORMAL, NONUNIT

and 1, respectively.

The MULT interface specifies a matrix product and sum C = alpha · op(A) ·
op(B) + beta · C. Again, op specifies whether matrices shall be transposed or

not, according to additional parameters transA and transB. alpha and beta

are also additional parameters of MULT. In the case of the MULT operation listed

above the additional parameters transA, transB, alpha and beta have values

NORMAL, NORMAL, −1 and 1, respectively.

4.2.1.2 Cholesky Factorization

Figure 4.28 depicts the architecture CholLoopBody, the initial architecture for

Cholesky factorization (its PIM). The loop body is composed of the following

sequence of operations:
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Figure 4.28: The PIM: CholLoopBody.

• CHOL : A11 = Chol(A11)

• TRS : A21 = A21 TriL(A−T11 )

• SYRANK : A22 = A22 - A21 A
T
21

The CHOL interface specifies Cholesky factorization. The TRS interface was

already described. The SYRANK interface specifies a symmetric rank update B =

alpha ·A ·AT+beta ·B or B = alpha ·AT ·A+beta ·B, depending on the value of its

additional parameter trans. tri, alpha and beta are also additional parameters

of SYRANK. tri specifies whether the lower or the upper triangular part of the

matrix C should be used (that is supposed to be symmetric). In the case of the

SYRANK operation listed above the additional parameters tri, trans, alpha and

beta have values LOWER, NORMAL, −1 and 1.

4.2.2 Unblocked Implementations

We start by presenting the derivation of unblocked implementations. In this case,

input A11 is a scalar (a matrix of size 1 × 1), inputs A21 and A12 are vectors

(matrices of size n×1 and 1×n, respectively), and A22 is a square matrix of size

n× n. The derivation of the optimized implementation uses this information to

choose specialized implementations for inputs of the given sizes [vdGQO08].

4.2.2.1 Unblocked Implementation of LU Factorization

The first step in the derivation is to optimize LU interface (see Figure 4.27) for

inputs of size 1 × 1. In this situation, LU operation can be implemented by the

identity, which allows us to obtain the architecture depicted in Figure 4.29.
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Figure 4.29: LULoopBody after replacing LU interface with algorithm LU 1x1.

We repeat this process for the other boxes, and in the next steps, we replace

each interface with an implementation optimized for the input sizes.

Figure 4.30: trs invscal algorithm.

For the TRS operation that updates

A21, as input A (A11) is a scalar, we have B

(A21) being scaled by alpha · 1/A (in this

case we have alpha = 1). This can be

implemented by algorithm trs invscal,

depicted in Figure 4.30. This algorithm

starts by scaling B by alpha (interface

SCALP), and then it scales the updated B by 1/A (interface INVSCAL). After

using this algorithm, we obtain the architecture depicted in Figure 4.31b.

(a) (b)

Figure 4.31: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing one TRS interface with algorithm trs invscal.

Next we proceed with the remaining TRS operation that updates A12. In this

case the lower part of input A (A11) is used. Moreover, additional parameter

diag specifies that the matrix is a unit lower triangular matrix, which means

that we have B (A12) being scaled by alpha ·1/1, or simply by alpha. Therefore,
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TRS can be implemented by algorithm trs scal, which uses SCALP interface to

scale input B. This allows us to obtain the architecture depicted in Figure 4.32b.

(a) (b)

Figure 4.32: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing the remaining TRS interface with algorithm trs scal.

Figure 4.33: mult ger algorithm.

Finally we have the MULT interface. In-

puts A and B are vectors, and C is a matrix,

therefore, we use interface GER to perform the

multiplication. The algorithm to be used is

depicted in Figure 4.33. As MULT performs

the operation alpha · A · B + beta · C, and

GER, by definition, just performs the opera-

tion alpha · A · B + C, we also need to scale matrix C (interface SCALP). After

applying this algorithm, we obtain the architecture depicted in Figure 4.34b.

As the additional parameter alpha used by all SCALP interfaces has the value

1, these interfaces can be implemented by the identity, resulting in the archi-

tecture depicted in Figure 4.35b. Figure 4.36 is the final architecture, and ex-

presses an optimized unblocked implementation of LULoopBody. The PSM would

be obtained replacing each interface present in the architecture with a primitive

implementation.

4.2.2.2 Unblocked Implementation of Cholesky Factorization

The derivation starts by optimizing CHOL interface (see Figure 4.28) for inputs of

size 1× 1. In this case, CHOL operation is given by the square root of the input
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(a)

(b)

Figure 4.34: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing one MULT interface with algorithm mult ger.

(a)

(b)

Figure 4.35: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing SCALP interfaces with algorithm scalp id.
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Figure 4.36: Optimized LULoopBody architecture.

Figure 4.37: CholLoopBody after replacing Chol interface with algorithm
chol 1x1.

value, as specified by algorithm chol 1x1. Applying this transformation allows

us to obtain the architecture depicted in Figure 4.37.

We proceed with the TRS operation. Input A (A11) is a scalar, therefore B

(A21) is scaled by alpha · 1/A, with alpha = 1. This allow us to use algorithm

trs invscal (previously depicted in Figure 4.30) to implement TRS. After using

this algorithm, we obtain the architecture depicted in Figure 4.38b.

Figure 4.39: syrank syr algorithm.

We then have the SYRANK operation.

Input A is a vector, and input B is a matrix,

therefore, we use interface SYR to perform

the operation. The algorithm to be used is

depicted in Figure 4.39. As for mult ger

(Figure 4.33), we also need interface SCALP

to scale matrix B by alpha. After applying this algorithm, we obtain the archi-

tecture depicted in Figure 4.40b.

As the additional parameter alpha used by all SCALP interfaces has the value

1, these interfaces can be implemented by the identity, resulting in the architec-

ture depicted in Figure 4.41b. Figure 4.42 is the final optimized architecture.
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(a)

(b)

Figure 4.38: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing TRS interface with algorithm trs invscal.

(a)

(b)

Figure 4.40: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing SYRANK interface with algorithm syrank syr.
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(a)

(b)

Figure 4.41: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing SCALP interfaces with algorithm scalp id.

Figure 4.42: Optimized CholLoopBody architecture.

4.2.2.3 Preconditions

The derivation of the unblocked implementation of LULoopBody was obtained

by refining the architecture with interface implementations specialized for the

specified input sizes. Consider the rewrite rule (LU, lu 1x1) (Figure 4.43), which

provides an implementation specialized for the case where input matrix A of

LU has size 1x1. In this case, LU operation is implemented by identity (no

computation is needed at all). As we saw before, other interfaces have similar

implementations, optimized for different input sizes.

The specialized implementations are specified by associating preconditions

to rewrite rules, which check properties about the size of inputs. Moreover,

postconditions are used to specify how operations affect data sizes. We now
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Figure 4.43: (LU, lu 1x1) rewrite rule.

describe how the pre- and postconditions needed for the derivation of unblocked

implementations are specified.2

Specifying Postconditions. To specify the postconditions we use the follow-

ing properties: SizeM is used to store the number of rows of a matrix, and SizeN

is used to store the number of columns of a matrix. Each box uses these prop-

erties to specify the size of its outputs. In DLA domain, output size is usually

obtained copying the size of one of its inputs. In Figure 4.44 we show the code

we use to specify the postconditions for some of the boxes used, which is part

of interpretation sizes. We define class Identity11, which specifies how size is

propagated by interfaces with an input and an output named A, for which the

input size is equal to the output size. Interpretations for boxes such as LU or

SCALP can be defined simply extending this class. Similar Java classes are used

to define the sizes interpretation for other boxes.

Specifying Preconditions. Preconditions for DLA operations are specified

by checking whether the properties of inputs have the desired values. We also

have some cases where the preconditions check the values of additional parame-

ters. Figure 4.45 shows some of the preconditions used. Class AScalar specifies

preconditions for checking whether input A is a scalar. It starts by reading the

properties containing the input size information, and then it checks whether both

sizes are equal to 1. If not, addError method is used to signal a failure validating

preconditions. The preconditions for algorithms such as lu 1x1 or trs invscal

are specified simply extending this class. As we mentioned before, other algo-

rithms have more preconditions, namely to require certain values for additional

2Later we show how these pre- and postconditions are extended when enriching the RDM
to support additional hardware platforms.
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public class Identity11 extends AbstractInterpretation {
public void compute() {

String sizeM = (String) getInputProperty("A", "SizeM");
String sizeN = (String) getInputProperty("A", "SizeN");
setOutputProperty("A", "SizeM", sizeM);
setOutputProperty("A", "SizeN", sizeN);

}
}

public class LU extends Identity11 {
// Reuses compute definition from Identity11

}

public class SCALP extends Identity11 {
// Reuses compute definition from Identity11

}

Figure 4.44: Java classes for interpretation sizes, which specifies DLA opera-
tions’ postconditions.

parameters. It is the case of algorithm trs scal, for example, which requires

its additional parameter diag to have the value UNIT, to specify that the input

A should be treated as a unit triangular matrix. Class trs scal (Figure 4.45)

shows how this requirement is specified. In addition to call the compute method

from its superclass (AScalar) to verify whether input A is a scalar, it obtains the

value of additional parameter diag, and checks whether it has the value UNIT.

Similar Java classes are used to define the preconditions for other boxes.

4.2.3 Blocked Implementations

Most of current hardware architectures are much faster performing computations

(namely floating point operations) than fetching data from memory. Therefore,

to achieve high-performance in DLA operations, it is essential to make a wise use

of CPU caches to compensate the memory access bottleneck [vdGQO08]. This

is usually done through the use of blocked algorithms [vdGQO08], having blocks

of data—where the number of operations is of higher order than the number of

elements to fetch from memory (e.g., cubic vs. quadratic)—processed together,

which enables a more efficient use of memory by taking advantage of different

levels of CPU caches.

In the following we show how loop bodies for blocked variants of programs
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public class AScalar extends AbstractInterpretation {
public void compute() {
String sizeM = (String) getInputProperty("A", "SizeM");
String sizeN = (String) getInputProperty("A", "SizeN");
if(!"1".equals(sizeM) || !"1".equals(sizeN)) {

addError("Input matrix A is not 1x1!");
}

}
}

public class lu_1x1 extends AScalar {
}

public class trs_invscal extends AScalar {
}

public class trs_scal extends AScalar {
public void compute() {
super.compute();
String unit = (String) getAddParam("diag");
if(!"UNIT".equals(unit)) {

addError("Input matrix A is not unit triangular!");
}

}
}

Figure 4.45: Java classes for interpretation presizes, which specifies DLA op-
erations’ preconditions.

are derived from their PIMs. For this version, input A11 is a square matrix of

size b × b (the block size), inputs A21 and A12 are matrices of size n × b and

b× n, and A22 is a square matrix of size n× n. We refine the PIMs to produce

implementations optimized for inputs with these characteristics.

4.2.3.1 Blocked Implementation of LU Factorization

We start the derivation by replacing LU interface with its general implementation,

specified by algorithm lu blocked. This algorithm simply uses LU B interface,

which specifies the LU factorization for matrices. This transformation results in

the architecture depicted in Figure 4.46.

Next we replace both TRS interfaces with algorithm trs trsm, which uses

TRSM interface to perform the TRS operation. These transformations result in

the architecture depicted in Figure 4.47b.

Finally, we replace the MULT interface with algorithm mult gemm, which uses
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Figure 4.46: LULoopBody after replacing LU interface with algorithm lu blocked.

(a) (b)

Figure 4.47: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing both TRS interfaces with algorithm trs trsm.

(a) (b)

Figure 4.48: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing MULT interface with algorithm mult gemm.
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GEMM interface to perform the MULT operation. After applying this transformation

we get the architecture depicted in Figure 4.48b. After flattening, we get the

LULoopBody architecture for blocked inputs, depicted in Figure 4.49.

Figure 4.49: Optimized LULoopBody architecture.

4.2.3.2 Blocked Implementation of Cholesky Factorization

We start the derivation by refining CHOL interface with its general implemen-

tation, specified by algorithm chol blocked. It uses CHOL B interface, which

specifies the Cholesky factorization for matrices, resulting in the architecture

depicted in Figure 4.50.

Figure 4.50: CholLoopBody after replacing CHOL interface with algorithm
chol blocked.

We then refine TRS interface with algorithm trs trsm, which uses TRSM inter-

face to perform the TRS operation. This transformation results in the architecture

depicted in Figure 4.51b.

Finally, we refine the SYRANK interface with algorithm syrank syrk, which

uses SYRK interface to perform the operation. After applying this transformation

we get the architecture depicted in Figure 4.52b, and after flattening it, we get

the CholLoopBody architecture for blocked inputs, depicted in Figure 4.53.
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(a)

(b)

Figure 4.51: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing both TRS interfaces with algorithm trs trsm.

(a)

(b)

Figure 4.52: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing MULT interface with algorithm syrank syrk.
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Figure 4.53: Final architecture: CholLoopBody after flattening syrank syrk al-
gorithms.

4.2.4 Distributed Memory Implementations

We now show how we can derive distributed memory implementations for DLA

programs. We achieve this by adding new rewrite rules. We also add new

interpretations to support additional pre- and postconditions required to express

the knowledge needed to derive distributed memory implementations. For these

derivations, we assume that the inputs are distributed using a [MC, MR] distribution

(see Section 2.3.1.6), and that several instances of the program are running in

parallel, each one having a different part of the input (i.e., the program follows

the SPMD model). We choose implementations (algorithms or primitives) for

each operation prepared to deal with distributed inputs [PMH+13].

4.2.4.1 Distributed Memory Implementation of LU Factorization

The starting point for this derivation is again the PIM LULoopBody (see Fig-

ure 4.27), which represents the loop body of the program that is executed by

each parallel instance of it.

Figure 4.54: dist2loca lu algorithm.

We start the derivation

with LU operation. We refine

LULoopBody replacing LU inter-

face with its implementation for

distributed memory, algorithm

dist2local lu (Figure 4.54).

The algorithm implements the operation by first redistributing input A. That

is, interface STAR STAR represents a redistribution operation, which uses col-

lective communications to obtain the same matrix in a different distribution
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(in this case [∗, ∗], which gathers all values of the matrix in all processes).3

We then call the LU operation on this “new” matrix, and we redistribute the

result (interface MC MR) to get a matrix with a [MC, MR] distribution so that the

behavior of the original LU interface is preserved (it takes a [MC, MR] matrix,

and produces a [MC, MR] matrix). By applying this transformation, we obtain the

architecture from Figure 4.55. Notice that we have again the LU operation in the

architecture. However, the input of LU is now a [∗, ∗] distributed matrix, which

enables the use of other LU implementations (such as the blocked and unblocked

implementations previously described).

Figure 4.55: LULoopBody after replacing LU interface with algorithm
dist2local lu.

Figure 4.56: dist2loca trs algorithm.

The architecture is then re-

fined by replacing the TRS inter-

face that processes input A21 with a

distributed memory implementation.

We use algorithm dist2local trs

(Figure 4.56). The algorithm uses

again STAR STAR to gather all values

from input A (initially using a [MC, MR]

distribution). This is a templatized algorithm, where redist box, which re-

distributes input matrix B (also initially using a [MC, MR] distribution), may be a

STAR MC, MC STAR, STAR MR, MR START, STAR VC, VC STAR, STAR VR, VR STAR, or

3We use a b (a, b ∈ {∗, MC, MR, VC, VR}) to denote the redistribution operation that takes
a matrix using any distribution, and converts it to a matrix using redistribution [a, b]. For
example, MC MR converts a matrix to a new one using a [MC, MR] distribution. By having a single
redistribution operation for any input distribution (instead of one for each pair of input and
output distributions), we reduce the number of redistribution operations we need to model
(one per output distribution), and also the number of rewrite rules we need.
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STAR STAR redistribution. The algorithm has preconditions: STAR ∗ redistribu-

tions can only be used when the side additional parameter has value LEFT, and

∗ STAR redistributions can only be used when side has value RIGHT. In this case,

side has value RIGHT, and we choose the variant dist2local trs r3, which uses

MC STAR redistribution. The redistributed matrices are then sent to TRS, and the

output is redistributed by MC MR back to a matrix using [MC, MR] distribution. This

transformation yields the architecture depicted in Figure 4.57b. As for the pre-

vious refinement, the transformation results in an architecture where the original

box is present, but the inputs now use different distributions.

(a)

(b)

Figure 4.57: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing one TRS interface with algorithm dist2local trs r3.

Next we refine the architecture replacing the other TRS interface with a similar

algorithm. This instance of TRS has the value LEFT for additional parameter

side, therefore we use a different variant of the algorithm, dist2local trs l2,

which uses STAR VR redistribution. The resulting architecture is depicted in

Figure 4.58b.

We now proceed with interface MULT. This operation can be implemented in

distributed memory environments by algorithm dist2local mult (Figure 4.59).
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(a)

(b)

Figure 4.58: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing TRS interface with algorithm dist2local trs l2.

Figure 4.59: dist2local -

mult algorithm.

The algorithm is templatized: redistA and

redistB can assume several values, which

are connected (by preconditions) to the possi-

ble values of the additional parameters transA

and transB. redistA interface may be a

MC STAR or STAR MC redistribution, depending on

whether transA is NORMAL or TRANS, respectively.

redistB interface may be a STAR MR or MR STAR

redistribution, depending on whether transB is

NORMAL or TRANS, respectively. In LULoopBody, MULT has transA = NORMAL and

transB = NORMAL, therefore the variant dist2local mult nn is used, yielding

the architecture depicted in Figure 4.60b. Input A and B (initially using a [MC, MR]

distribution) are redistributed before the MULT operation. As input C is not re-

distributed before the MULT operation, there is no need to redistribute the output

of MULT, which always uses a [MC, MR] distribution in this algorithm.
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(a)

(b)

Figure 4.60: LULoopBody: (a) previous architecture after flattening, and (b) after
replacing MULT interface with algorithm dist2local mult nn.

We refined the architecture to expose the redistributions (communications)

needed to perform the computation. That is, at this point, there are imple-

mentations for non-redistribution boxes (LU, TRS, and MULT) that do not require

any communication. By exposing the redistributions needed by each interface

present in the initial PIM, these refinements allow us to optimize the communi-

cations, by looking at the compositions of redistribution interfaces that resulted

from removing the modular boundaries of the algorithms chosen.

The current LULoopBody is shown again, completely flattened, in Figure 4.61.

We now show how communications exposed by previous refinements are opti-

mized.

We start analysing the redistributions that follow the LU interface. The

output of LU uses a [∗, ∗] distribution. After LU, its output matrix is

redistributed to a [MC, MR] distribution. Before being used by TRS inter-

faces, this matrix is redistributed again to a [∗, ∗] distribution. An obvious
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Figure 4.61: LULoopBody flattened after refinements.

Figure 4.62: Optimization rewrite rules to remove un-

necessary STAR STAR redistribution.

optimization can be

applied, which con-

nects LU directly to the

TRS interfaces, remov-

ing the (expensive) re-

distribution operation

STAR STAR. This opti-

mization is expressed by

the rewrite rules from

Figure 4.62. The algo-

rithm boxes have a pre-

condition that requires the input to use a [∗, ∗] distribution. When this happens,

if we redistribute the input to any distribution, and then we redistribute back to

a [∗, ∗] distribution (pattern inv ss0), the STAR STAR interface can be removed

(algorithm inv ss1), as the output of STAR STAR is equal to the original input.

These rewrite rules are templatized, as the first redistribution ( redist) may be

any redistribution interface.

By applying the optimization expressed by these rewrite rules twice, we

remove both interior STAR STAR redistributions, obtaining the architecture de-

picted in Figure 4.63.

A similar optimization can be used to optimize the composition of re-

distributions that follows TRS interface that updates A21. In this case,

the output of TRS uses a [MC, ∗] distribution, and it is redistributed to
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Figure 4.63: LULoopBody after applying optimization to remove STAR STAR re-
distributions.

Figure 4.64: Optimization rewrite rules to remove

unnecessary MC STAR redistribution.

[MC, MR], and then back to

[MC, ∗], before being used

by MULT. The rewrite rules

depicted in Figure 4.64

(similar to the one pre-

viously described in Fig-

ure 4.62) express this op-

timization. Its application

yields the architecture de-

picted in Figure 4.65.

Figure 4.65: LULoopBody after applying optimization to remove MC STAR redis-
tributions.

Lastly, we analyse the interfaces that follow TRS interface updating matrix

A12. The output matrix uses a [∗, VR] distribution, and redistributions MC MR

and STAR MR are used to produce [MC, MR] and [∗, MR] distributions of the matrix.
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Figure 4.66: Optimization rewrite rules to swap

the order of redistributions.

However, the same behav-

ior can be obtained invert-

ing the order of the redis-

tributions, i.e., starting by

producing [∗, MC] matrix and

then using that matrix to pro-

duce a [MC, MR] distributed ma-

trix. This alternative compo-

sition of redistributions is also

more efficient, as we can ob-

tain a [MC, MR] distribution from

a [∗, MC] distribution simply discarding values (i.e., without communication

costs). This optimization is expressed by the rewrite rules from Figure 4.66,

where two templatized rewrite rules express the ability to swap the order of two

redistributions. In this case, redistA is MC MR, and redistB is STAR MR. After

applying this transformation, we obtain the optimized architecture depicted in

Figure 4.67.

Figure 4.67: Optimized LULoopBody architecture.

4.2.4.2 Distributed Memory Implementation of Cholesky

Factorization

To derive a distributed memory implementation for Cholesky factorization, we

start with the CholLoopBody PIM (see Figure 4.28), which represents the loop

body of the program that is executed by each parallel instance of it.
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Figure 4.68: dist2local chol algorithm.

The first step of the deriva-

tion is to refine the architec-

ture by replacing CHOL with an

algorithm for distributed mem-

ory inputs. We use the

dist2local chol algorithm, de-

picted in Figure 4.68. This algorithm is similar to dist2local lu. It implements

the operation by first redistributing input A (that initially uses a [MC, MR] distribu-

tion), i.e., interface STAR STAR is used to obtain a [∗, ∗] distribution of the input

matrix. Then CHOL operation is called on the redistributed matrix, and finally

we redistribute the result (interface MC MR) to get a matrix with a [MC, MR] distri-

bution. By applying this transformation, we obtain the architecture depicted in

Figure 4.69.

Figure 4.69: CholLoopBody after replacing CHOL interface with algorithm
dist2local chol.

The next step is to refine the architecture by replacing TRS interface

with a distributed memory implementation. As for LULoopBody, we use

dist2local trs templatized implementation (see Figure 4.56). However, in

this case we choose algorithm dist2local trs r1, which uses VC STAR to re-

distribute input B. This transformation yields the architecture depicted in Fig-

ure 4.70b.

We proceed with interface SYRANK. For this interface, we use algo-

rithm dist2local syrank (Figure 4.71). This algorithm is templatized:

redistA and redistB can assume several values, which are connected (by

preconditions) to the possible values of the additional parameter trans.
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(a)

(b)

Figure 4.70: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing TRS interface with algorithm dist2local trs r1.

Figure 4.71: dist2local syrank

algorithm.

In this case trans = NORMAL, there-

fore variant dist2local syrank n is used,

where redistA is MR STAR and redistB is

MC STAR. As input C is not redistributed be-

fore the TRRANK operation, there is no need

to redistribute the output of TRRANK, which

already uses [MC, MR] distribution. The trans-

formation yields the architecture depicted in

Figure 4.72b.

We reached again the point where we exposed the redistributions needed so

that each operation present in the initial PIM can be computed locally. The

current CholLoopBody is shown again, completely flattened, in Figure 4.73. We

proceed the derivation optimizing the compositions of redistributions introduced

in the previous steps.

We start analysing the redistributions that follow the CHOL interface. It

exposes the same inefficiency we saw after LU interface in LULoopBody (see Fig-

ure 4.61). The output of CHOL uses a [∗, ∗] distribution, and before the TRS

interface, this matrix is redistributed to a [MC, MR] distribution and then back to
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(a)

(b)

Figure 4.72: CholLoopBody: (a) previous architecture after flattening, and (b)
after replacing SYRANK interface with algorithm dist2local syrank n.

Figure 4.73: CholLoopBody flattened after refinements.

Figure 4.74: CholLoopBody after applying optimization to remove STAR STAR

redistribution.

a [∗, ∗] distribution. Thus, we can remove redistribution operation STAR STAR,

reusing the optimization expressed by the rewrite rules presented in Figure 4.62,

which results in the architecture depicted in Figure 4.74.
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Figure 4.75: vcs mcs algorithm.

The next step in the derivation is to refine

the architecture expanding some of the redistri-

butions as a composition of redistributions, in

order to expose further optimization opportu-

nities. We replace MC STAR with its algorithm

vcs mcs (Figure 4.75), which starts by obtaining a [VC, ∗] distribution of the

matrix, and only then obtains the [MC, ∗] distribution.

Figure 4.76: vcs vrs mrs algorithm.

We also replace MR STAR with

its algorithm vcs vrs mrs (Fig-

ure 4.76), which starts by obtain-

ing a [VC, ∗] distribution of the

matrix, then obtains a [VR, ∗] dis-

tribution, and finally obtains the

[MR, ∗] distribution. These refinements result in the architecture depicted in Fig-

ure 4.77.

Figure 4.77: CholLoopBody after refinements that replaced MC STAR and MR STAR

redistributions.

The previous refinements exposed the redistribution VC STAR immediately

after the MC MR interface that redistributes the output of TRS. But the output

of TRS is already a matrix using a [VC, ∗] distribution, thus the VC STAR redis-

tributions can be removed. This is accomplished by applying an optimization

modeled by similar rewrite rules to the previously presented in Figure 4.62 and

Figure 4.64, which yields the architecture depicted in Figure 4.78.

There is one more redistribution optimization. From the output ma-

trix of TRS, we are obtaining directly a [MC, MR] distribution (MC MR) and a
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Figure 4.78: CholLoopBody after applying optimization to remove VC STAR re-
distributions.

Figure 4.79: Optimization rewrite rules to obtain

[MC, MR] and [MC, ∗] distributions of a matrix.

[MC, ∗] distribution (MC STAR).

However, it is more effi-

cient to obtain a [MC, MR]

distribution from a [MC, ∗]
distribution than from a

[VC, ∗] distribution (used by

the output matrix of TRS).

The former does not re-

quire communication at all.

The rewrite rules from Fig-

ure 4.79 model this opti-

mization. After applying it,

we obtain the architecture depicted in Figure 4.80, which finalizes our derivation.

Figure 4.80: Optimized CholLoopBody architecture.

4.2.4.3 Preconditions

Previous preconditions for DLA boxes specified requirements of implementations

specialized for certain inputs sizes. However, we assumed that all matrices were

stored locally. In this section we introduced distributed matrices to allow us to
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derive implementations optimized for distributed memory hardware platforms.

This required the addition of new rewrite rules. It also requires a revision of pre-

and postconditions, which now should also take into account the distribution

of input matrices. Due to the ability to compose interpretations provided by

ReFlO, this can be achieved without modifying the previously defined pre- and

postconditions.

Specifying Postconditions. Besides the properties we already defined in

interpretation sizes (and that we have to specify for the new boxes added

to support distributed memory environments), we are going to define a new

property (postcondition), called Dist, that we use to store the distribution of

a matrix. This new postcondition is defined by a new interpretation, called

distributions. For each interface and primitive, we have to specify how the

distribution of its outputs is obtained. For redistribution interfaces, each one

determines a specific output’s distribution. For example, STAR STAR produces a

[∗, ∗] distributed matrix, and MC MR produces a [MC, MR] distributed matrix. For

the other boxes, output distribution is usually computed in a similar way to

sizes, i.e., it is obtained from the value of the distribution of one of its inputs.

Figure 4.81 shows the code we use to specify the distribution interpretation for

some of the boxes we used. As mentioned before, we also have to define the Java

classes of sizes interpretation for the new boxes we added. The redistribution

interfaces’ output matrix size can be obtained from the size of its inputs. For

example, for STAR STAR and MC MR it is equal to the input matrix size, thus the

sizes interpretation for these boxes is defined simply extending the Identity11

(see Figure 4.44), as shown in Figure 4.81.

Specifying Preconditions. As for postconditions, we are also going to define

a new interpretation (predists) to specify the additional preconditions required

when we allow distributed matrices. For example, algorithms chol blocked or

chol 1x1 require the input matrix to use a [∗, ∗] distribution, or to be a lo-

cal matrix. Other algorithms have more complex preconditions, where several

input distributions are allowed, or where the valid redistributions depend on
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public class STAR_STAR extends AbstractInterpretation {
public void compute() {
setOutputProperty("A", "Dist", "STAR_STAR");

}
}

public class MC_MR extends AbstractInterpretation {
public void compute() {
setOutputProperty("A", "Dist", "MC_MR");

}
}

public class Identity11 extends AbstractInterpretation {
public void compute() {
String dist = (String) getInputProperty("A", "Dist");
setOutputProperty("A", "Dist", dist);

}
}

public class LU extends Identity11 {
// Reuses compute definition from Identity11

}

public class plu_b extends Identity11 {
}

public class SCALP extends Identity11 {
}

Figure 4.81: Java classes for interpretation distributions, which specifies DLA
operations’ postconditions regarding distributions.

public class STAR_STAR extends Identity11 {
}

public class MC_MR extends Identity11 {
}

Figure 4.82: Java classes of interpretation sizes, which specifies DLA opera-
tions’ postconditions regarding matrix sizes for some of the new redistribution
interfaces.

the values of additional parameters. For example, algorithm trs trsm requires

input matrix A to use [∗, ∗] distribution or to be a local matrix, but for in-

put B it allows [∗, ∗], [MC, ∗], [MR, ∗], [VC, ∗] or [VR, ∗] distribution when additional

parameter side has value RIGHT, or [∗, ∗], [∗, MC], [∗, MR], [∗, VC] or [∗, VR] distri-

bution when additional parameter side has value LEFT. During the derivation

we also mentioned that the templatized algorithms we presented have precondi-
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public class chol_blocked extends AbstractInterpretation {
public void compute() {
String dist = (String) getInputProperty("A", "Dist");
if(!"STAR_STAR".equals(dist) && !"LOCAL".equals(dist)) {
addError("Input matrix A does not use [*,*] distribution nor it is local!");
}
}
}
public class chol_1x1 extends AbstractInterpretation {
public void compute() {
String dist = (String) getInputProperty("A", "Dist");
if(!"STAR_STAR".equals(dist) && !"LOCAL".equals(dist)) {
addError("Input matrix A does not use [*,*] distribution nor it is local!");
}
}
}
public class trs_trsm extends AbstractInterpretation {
public void compute() {
String distA = (String) getInputProperty("A", "Dist");
String distB = (String) getInputProperty("B", "Dist");
String side = (String) getAddParam("side");
if(!"STAR_STAR".equals(dist) && !"LOCAL".equals(dist)) {
addError("Input matrix A does not use [*,*] distribution nor it is local!");
}
if("RIGHT".equals(side)) {
if(!"STAR_STAR".equals(distB)&&!"LOCAL".equals(dist)&&!"MC_STAR".equals(distB)&&

!"MR_STAR".equals(distB)&&!"VC_STAR".equals(distB)&&!"VR_STAR".equals(distB)) {
addError("Input matrix B does not use a valid distribution!");

}
}
else if("LEFT".equals(side)) {
if(!"STAR_STAR".equals(distB)&&!"LOCAL".equals(dist)&&!"STAR_MC".equals(distB)&&

!"STAR_MR".equals(distB)&&!"STAR_VC".equals(distB)&&!"STAR_VR".equals(distB)) {
addError("Input matrix B does not use a valid distribution!");

}
}
}
}
public class dist2local_trs_r3 extends AbstractInterpretation {
public void compute() {
String distA = (String) getInputProperty("A", "Dist");
String distB = (String) getInputProperty("B", "Dist");
String side = (String) getAddParam("side");
if(!"MC_MR".equals(distA)) {
addError("Input matrix A does not use [Mc,Mr] distribution!");
}
if(!"MC_MR".equals(distB)) {
addError("Input matrix B does not use [Mc,Mr] distribution!");
}
if(!"RIGHT".equals(side)) {addError("Additional parameter side is not ’RIGHT’!");}
}
}

Figure 4.83: Java classes of interpretation predists, which specifies DLA oper-
ations’ preconditions regarding distributions.
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tions regarding the additional parameters. For example, the dist2local trs r3

algorithm used during the derivation of LULoopBody can only be used when addi-

tional parameter side has value RIGHT. Moreover, the dist2local ∗ algorithms

assume the input matrices use a [MC, MR] distribution. In Figure 4.83 we show the

Java classes we use to specify these preconditions. By composing interpretations

predist ◦ presizes ◦ distributions ◦ sizes we are able to evaluate the pre-

and postconditions of architectures. This ability to compose interpretations was

essential to allow us to add new preconditions to existing boxes without having

to modify previously defined classes.

4.2.5 Other Interpretations

4.2.5.1 Cost Estimates

Cost estimates are obtained adding the costs of each box present in an archi-

tecture. As for databases, we build a string containing a symbolic expression.

Constants denoting several runtime parameters, such as network latency cost

(alpha), the network transmission cost (beta), the cost of a floating point op-

eration (gamma), or the size of the grid of processors (p, r, c) are used to define

the cost of each operation. The costs of the operations depends on the size of

the data being processed. Thus, we reuse the sizes interpretation. Moreover,

it also depends on the distribution of the input, and therefore distributions

interpretation is also reused.

Figure 4.84 shows examples of cost expressions for pchol b primitive, and

for STAR STAR interface and pstar star primitive box, implemented by costs

interpretation. For pchol b, the cost is given by 1/3∗size3M∗gamma, where sizeM

is the number of rows (or the number of columns, as the matrix is square) of the

input matrix. As pchol b requires a STAR STAR distributed matrix, or a local

matrix, the cost does not depend on the input distribution. For STAR STAR, the

cost depends on the input distribution. In the case the input is using a [MC, MR]

distribution, the STAR STAR redistribution requires an AllGather communication

operation [CHPvdG07]. We use method Util.costAllGather to provide us the
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cost expression of an AllGather operation for a matrix of size sizeM ∗ sizeN,
and using p processes. The cost of primitive pstar star is the same of the

interface it implements, therefore its Java class simply extends class STAR STAR.

The costs interpretation is backward, as the costs of an algorithm are computed

from the costs of its internal boxes. Thus, the costs are progressively sent to their

parent boxes, until they reach the outermost box, where the costs of all boxes are

aggregated. (This is done in the last four lines of code of each compute method.)

The COST S interpretation is the result of the composition of interpretations

costs ◦ distributions ◦ sizes.

public class pchol_b extends AbstractInterpretation {
public void compute() {

String sizeM = (String) getInputProperty("A", "SizeM");
String cost = "1/3 * (" + sizeM + ")^3 * gamma";
setBoxProperty("Cost", cost);
String parentCost = (String) getParentProperty("Cost");
if(parentCost == null) parentCost = cost;
else parentCost = "(" + parentCost + ") + (" + cost + ")";
setParentProperty("Cost", parentCost);

}
}

public class STAR_STAR extends AbstractInterpretation {
public void compute() {

String sizeM = (String) getInputProperty("A", "SizeM");
String sizeN = (String) getInputProperty("A", "SizeN");
String dist = (String) getInputProperty("A", "Dist");
String cost = "";
if("MC_MR".equals(dist)) {
cost = Util.costAllGather("(" + sizeM + ") * (" + sizeN + ")", "p");

}
else {
// costs for other possible input distributions

}
setBoxProperty("Cost", cost);
String parentCost = (String) getParentProperty("Cost");
if(parentCost == null) parentCost = cost;
else parentCost = "(" + parentCost + ") + (" + cost + ")";
setParentProperty("Cost", parentCost);

}
}

public class pstar_star extends STAR_STAR {
}

Figure 4.84: Java classes of interpretation costs, which specifies DLA opera-
tions’ costs.
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4.2.5.2 Code Generation

ReFlO generates code (in this case, C++ code for the Elemental li-

brary [PMH+13]) using interpretations. For this purpose, we rely on three

different interpretations. Two of them are used to determine the names of

variables used in the program loop body. The variable’s name is determined

by the architecture input variable name, and by the distribution. Thus, one

of the interpretations used is distributions (that we also used to compute

preconditions and costs). The other one propagates the names of variables, i.e.,

it takes the name of a certain input variable and associates it to the output.

We named this interpretation names, and some examples of Java classes used to

specify this interpretation are shown in Figure 4.85.

public class Identity11 extends AbstractInterpretation {
public void compute() {
String name = (String) getInputProperty("A", "Name");
setOutputProperty("A", "Name", name);

}
}

public class Identity21 extends AbstractInterpretation {
public void compute() {
String name = (String) getInputProperty("B", "Name");
setOutputProperty("B", "Name", name);

}
}

public class plu_b extends Identity11 {
}

public class ptrsm extends Identity21 {
}

public class STAR_STAR extends Identity11 {
}

Figure 4.85: Java classes of interpretation names, which specifies DLA opera-
tions’ propagation of variables’ names.

Lastly, we have interpretation code, which takes the variable’s names and

distributions, and generates code for each primitive box. Figure 4.86 shows Java

classes specifying how code is generated for plu b (a primitive that implements

LU B), and pstar star (a primitive that implements STAR STAR). For plu b,

function LU is called with the input matrix (that is also the output matrix).
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(Method Util.nameDist is used to generate the variable name, and to append

a method call to it to obtain the local matrix, when necessary.) Code for other

DLA operations is generated in a similar way. For pstar star, we rely on =

operator overload provided by Elemental, therefore the generated code is of the

type < inputname >=< outputname >;.

public class plu_b extends AbstractInterpretation {
public void compute() {

String dist = (String) getInputProperty("A", "Dist");
String name = (String) getInputProperty("A", "Name");
String nameDist = Util.nameDist(name, dist, false);
String pCode = (String) getParentProperty("Code");
if(pCode==null) pCode="";
pCode = "LU(" + nameDist + ");\n" + pCode;
setParentProperty("Code", pCode);

}
}

public class pstar_star extends AbstractInterpretation {
public void compute() {

String dist = (String) getInputProperty("A", "Dist");
String name = (String) getInputProperty("A", "Name");
String nameDist = Util.nameDist(name, dist, false);
String pCode = (String) getParentProperty("Code");
if(pCode==null) pCode="";
pCode = name + "_STAR_STAR = " + nameDist";\n" + pCode;
setParentProperty("Code", pCode);

}
}

Figure 4.86: Java classes of interpretation names, which specifies DLA opera-
tions’ propagation of variables’ names.

The M2T interpretation is therefore the result of the composition of inter-

pretations code ◦ names ◦ distributions. It allows us to generate the code for

an architecture representing the loop body of a program. An example of such

code is depicted in Figure 4.87.

Recap. In this section we showed how we use ReFlO to explain the derivation

of optimized DLA programs. We illustrated how optimized implementations

for different hardware platforms (PSMs) can be obtained from the same initial

abstract specification (PIM) of the program. Moreover, we showed how ReFlO

allows domain experts to incrementally add support for new hardware platforms

in an RDM. By encoding the domain knowledge, not only we can recreate (and
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A11_STAR_STAR = A11;
LU(A11_STAR_STAR);
A11 = A11_STAR_STAR;
A21_MC_STAR = A21;
Trsm(RIGHT, UPPER, NORMAL, NON_UNIT, F(1), A11_STAR_STAR.LockedMatrix(),

A21_MC_STAR.Matrix());
A21 = A21_MC_STAR;
A12_STAR_VR = A12;
Trsm(LEFT, LOWER, NORMAL, UNIT, F(1), A11_STAR_STAR.LockedMatrix(),

A12_STAR_VR.Matrix());
A12_STAR_MR = A12_STAR_VR;
Gemm(NORMAL,NORMAL, F(-1), A21_MC_STAR.LockedMatrix(), A12_STAR_MR.LockedMatrix(),

F(1), A22.Matrix());
A12 = A12_STAR_MR;

Figure 4.87: Code generated for the architecture of Figure 4.67 (after replacing
interfaces with blocked implementations, and then with primitives).

explain) expert’s created implementations, but also allow other developers to use

expert knowledge when optimizing their programs. Further, ReFlO can export

an RDM to C++ code that can be used by an external tool to automate the

search for the best implementation (according to some cost function) for a certain

program [MPBvdG12].



Chapter 5

Encoding Domains: Extension

In Chapter 3 we explained how we encode knowledge to derive an optimized

implementation from a high-level architecture (specification). Using refinements

and optimizations, we incrementally transformed an initial architecture, preserv-

ing its behavior, until we reached another architecture with the desired properties

regarding, for example, efficiency or availability.

The derivation process starts with an initial architecture (i.e., abstract spec-

ification or PIM). This initial architecture could be complicated and not easily

designable from scratch. A way around this is to “derive” this initial architec-

ture from a simpler architecture that defined only part of the desired behavior.

To this simpler architecture, new behavior is added until we get an architecture

with desired behavior. Adding behavior is the process of extension; the behavior

(or functionality) that is added is called a feature.

In its most basic form, an extension maps a box A without a functionality to a

new box B that has this functionality and the functionality of A. Like refinements

and optimizations, extensions are transformations. But unlike refinements and

optimizations, extensions change (enhance) the behavior of boxes. We use A B

to denote that box B extends box A or A  f.A, where f.A denotes A extended

with feature f.

Extensions are not new. They can be found in classical approaches to software

development [Spi89, Abr10]. Again, one starts with a simple specification A0 and

121



122 5. Encoding Domains: Extension

progressively extends it to produce the desired specification, say D0. This process

is A0  B0  C0  D0 in Figure 5.1a. The final specification is then used as

the starting point of the derivation, using refinements and optimizations, to

produce the desired implementation D4. This derivation is D0 ⇒ D1 ⇒ D2 ⇒ D3

in Figure 5.1b. Alternative development paths can be explored to make this

development process more practical [RGMB12].

A0 B0 C0 D0

(a)

D0

D1

D2

D3

(b)

Figure 5.1: Extension vs. derivation.

There are rich relationships among extensions, rewrite rules, derivations,

dataflow graphs, and software product lines (SPLs) [CN01]. This chapter is dedi-

cated to the exploration of these relationships, to obtain a practical methodology

to show how to extend dataflow graphs and rewrite rules, and an efficient way

to encode this knowledge in the ReFlO framework/tool. We also explore the use

of extensions to enable the derivation of product lines of program architectures,

which naturally arise when extensions express optional features. We start by

motivating examples of extensions.

5.1 Motivating Examples and Methodology

5.1.1 Web Server

Consider the Server dataflow architecture (PIM) in Figure 5.2 that besides

projecting and sorting a stream of tuples (as in the ProjectSort architecture,
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previously shown in Section 3.1), formats them to be displayed (box WSERVER),

and outputs the formatted stream.

Figure 5.2: The Server architecture.

Suppose we want to add new functionality to the Server architecture. For

example, suppose we want Server to be able to change the sort key attribute

at runtime. How would this be accomplished? We would need to extend the

original PIM with feature key (labeled K): Server K.Server, resulting in the

PIM depicted in Figure 5.3.

Figure 5.3: The architecture K.Server.

Methodology. This mapping is accomplished by a simple proce-

dure. Think of K (or key) as a function that maps each element

e—where an element is a box, port or connector—to an element K.e.

Often K.e is an extension of e: a connector may carry more data,

a box has a new port, or its ports may accept data conforming to

an extended data type.1 Sometimes, K deletes or removes element e.

What exactly the outcome should be is known to an expert—it is not

always evident to non-experts. For our Server example, the effect of

extensions are not difficult to determine.

The first step of this procedure is to perform the K mapping. Fig-

ure 5.4 shows that the only elements that are changed by K are

the SORT and WSERVER boxes. Box K.SORT, which k-extends SORT,

1In object oriented parlance, E is an extension of C iff E is a subclass of C.
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Figure 5.4: Applying K to Server.

has sprouted a new input (to specify the sort key parameter), and

K.WSERVER has sprouted a new output (that specifies a sort key pa-

rameter). The resulting architecture (Figure 5.4) is called provi-

sional—it is not yet complete.

The last step is to complete the provisional architecture: the new

input of K.SORT needs to be provided by a connector, and an expert

knows that this can be achieved by connecting the new output of

K.WSERVER to the new input of K.SORT. This yields Figure 5.3, and

the Server K.Server mapping is complete.

Now suppose we want K.Server to change the list of attributes that are

projected at runtime. We would accomplish this with another extension:

K.Server  L.K.Server (L denotes feature list). This extension would result

in the PIM depicted in Figure 5.5.

Figure 5.5: The architecture L.K.Server.

Methodology. The same methodology is applied as before. L maps

each element e ∈ K.Server to L.e. The L mapping is similar to that

of K: box L.PROJECT sprouts a new input port (to specify the list

of attributes to project) and L.K.WSERVER sprouts a new output port

(to provide that list of attributes). This results in the provisional

architecture of Figure 5.6.
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Figure 5.6: Applying L to K.Server.

The next step is, again, to complete Figure 5.6. The new input of

L.Project needs to be provided by a connector, and an expert knows

that the source of the connector is the new output of L.K.Server.

This yields Figure 5.5, which completes the K.Server L.K.Server.

Considering the two features just presented, we have defined three PIMs:

Server, K.Server, and L.K.Server. Another PIM could also be defined, taking

our initial Server architecture, and extending it with just the list feature.

Figure 5.7 depicts the different PIMs we can build. Starting from Server, we

can either extend it with feature key (obtaining K.Server) or with feature list

(obtaining L.Server). Taking any of these new PIMs, we can add the remaining

feature (obtaining L.K.Server). That is, we have a tiny product line of Servers,

where Server is the base product, and key and list are optional features.

Server

K.Server

L.Server

L.K.Server

Figure 5.7: A Server Product Line.

Henceforth, we assume the order in which features are composed is irrelevant:

L.K.Server = K.L.Server, i.e., both mean Server is extended with features list

and key. This is a standard assumption in the SPL literature, where a product

is identified by its set of features. Of course, dependencies among features can

exist, where one feature requires (or disallows) another [ABKS13, Bat05]. This
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is not the case for our example; nevertheless, the approach we propose does not

preclude such constraints.

PIMs are abstract specifications that are used as the starting point for the

derivation of optimized program implementations. We can use the rewrite rules

presented in Section 3.1 to produce an optimized implementation (PSM) for the

Server PIM. Similar derivations can be produced for each of the extended PIMs.

The question we may pose now is: what is the relationship among the deriva-

tions (and the rewrite rules they use) of the different PIMs obtained through

extension?

5.1.2 Extension of Rewrite Rules and Derivations

Taking the original Server PIM, we can use the rewrite rules presented in Sec-

tion 3.1 and produce an optimized parallel implementation for it. We start by

using algorithm parallel sort (we denote it by t1) and parallel project (we

denote it by t2) to refine the architecture. Then, we use ms mergesplit (t3)

and ms identity (t4) algorithms to optimize the architecture. That is, we have

the derivation Server0
t0=⇒ Server1

t1=⇒ Server2
t3=⇒ Server3

t4=⇒ Server4 (the

Server indexes denote the different stages of the derivation, where Server0 is

the PIM, and Server4 is the PSM). This derivation results in the PSM depicted

in Figure 5.8.

Figure 5.8: The optimized Server architecture.

We showed in the previous section how to extend the Server PIM to support

additional features. However, we also want to obtain the extended PSMs for

these PIMs. To extend the PIM, we extended the interfaces it used. Therefore,

to proceed with the PSM derivation of the extended PIMs, we have to do the

same with the implementations of these interfaces. Effectively, this means we are
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extending the rule set {t1, t2, t3, t4}. Figure 5.9 shows (SORT, parallel sort) 

(K.SORT, K.parallel sort), i.e., how the rewrite rule (SORT, parallel sort) (or

t1) is extended to support the key feature.

Figure 5.9: Extending the (SORT, parallel sort) rewrite rule.

Methodology. Extending rules is no different than extending ar-

chitectures. To spell it out, a rewrite rule (L, R) has an LHS box L

and an RHS box R. If K is the feature/extension to be applied, L is

mapped to a provisional K.L, and R is mapped to a provisional K.R.

These provisional architectures are then completed (by an expert)

yielding the non-provisional K.L and K.R. From this, rule extension

follows: (L, R) (K.L, K.R).

The rewrite rule (PROJECT, parallel project) can be extended in a

similar way to support the list feature. We also have the exten-

sion of (SORT, parallel sort) by the list feature, and the extension of

(PROJECT, parallel project) by the key feature. Both extensions are iden-

tity mappings, i.e.:

(SORT, parallel sort) = (L.SORT, L.parallel sort)

(PROJECT, parallel project) = (K.PROJECT, K.parallel project)
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The same happens with the optimization rewrite rules, because they are not

affected by these extensions. Moreover,

(K.SORT, K.parallel sort) (L.K.SORT, L.K.parallel sort)

(L.PROJECT, L.parallel project) (L.K.PROJECT, L.K.parallel project)

are also identity mappings.

With these extended rewrite rules, we can now obtain derivations:

• K.Server0
K.t0==⇒ K.Server1

K.t1==⇒ K.Server2
K.t3==⇒ K.Server3

K.t4==⇒ K.Server4,

• L.Server0
L.t0==⇒ L.Server1

L.t1==⇒ L.Server2
L.t3==⇒ L.Server3

L.t4==⇒ L.Server4,

and

• L.K.Server0
L.K.t0===⇒ L.K.Server1

L.K.t1===⇒ L.K.Server2
L.K.t3===⇒ L.K.Server3

L.K.t4===⇒
L.K.Server4

which produce the PSMs for the different combinations of features.

Considering that rewrite rules express transformations, and that extensions

are also transformations, extensions of rewrite rules are higher-order transforma-

tions, i.e., transformations of transformations.

5.1.2.1 Bringing It All Together

We started by extending our Server PIM, which lead to a small product line of

servers (Figure 5.7). We showed how the rewrite rules used in the derivation of

the original PIM can be extended. Those rewrite rules were then used to obtain

the derivations for the different PIMs, and allowed us to obtain their optimized

implementations. That is, by specifying the different extensions mappings (for

PIMs, interfaces, implementations), we can obtain the extended derivations (and

the extended PSMs), as show in Figure 5.10a. Our methodology allows us to

relate extended PSMs in the same way as their PIMs (Figure 5.10b).

Admittedly, Server is a simple example. In more complex architectures, ob-

taining extended derivations may require additional transformations (not just the
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Server0

K.Server0

L.Server0

L.K.Server0

Server4

K.Server4

L.Server4

L.K.Server4

(a)

Server0

K.Server0

L.Server0

L.K.Server0

Server4

K.Server4

L.Server4

L.K.Server4

(b)

Figure 5.10: Extending derivations and PSMs.

extended counterparts of previous transformations), or previously-used transfor-

mations to be dropped. Such changes we cannot automate—they would have

to be specified by a domain-expert. Nevertheless, a considerable amount of tool

support can be provided to users and domain-experts in program derivation,

precisely because the basic pattern of extension that we use is straightforward.

5.1.3 Consequences

We now discuss something fundamental to this approach. When we extend

the rewrite rules and add extra functionality, we make models slightly more

complex. Extended rewrite rules are used to produce extended PSMs. We have

observed that slightly more complex rewrite rules typically result in significantly

more complex PSMs.

To appreciate the (historical) significance of this, recall that a tenet of clas-

sical software design is to start with a simple specification (architecture) A0 and

progressively extend it to the desired (and much more complex spec) D0. At this

time, refinements and optimizations are applied to derive the implementation D3

of D0 (Figure 5.11a). This additional complexity added by successive extensions

often makes it impractical to discover the refinements and optimizations required

to obtain to final implementation [RGMB12].
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Figure 5.11: Derivation paths.

This lead us to explore an alternative, more incremental approach, based

on extensions. Instead of starting by extending the specification, we start by

obtaining an implementation for the initial specification. That is, considering

the initial specification A0, we build its derivation A0 ⇒ A1 ⇒ A2 ⇒ A3, to obtain

implementation A3 (Figure 5.11b). Next, we extend the specification, producing

a new one (B0), closer to the desired specification, from which we produce a new

derivation B0 ⇒ B1 ⇒ B2 ⇒ B3 (Figure 5.11c). We repeat the process until we

get to the final (complete) specification D0, from which we build the derivation

that produces the desired implementation D3 (Figure 5.11d).

This alternative approach makes a derivation process more incremen-

tal [RGMB12]. It allows us to start with a simpler derivation, which uses re-

finements and optimizations easier to understand and explain. Then, each new

derivation is typically obtained with rewrite rules similar to the ones used in the

previous derivation. By leveraging the relationships among the different deriva-

tions, and among the rewrite rules required for each derivation, we can improve

the development process, providing tool support to capture additional knowl-

edge, and making it easier to understand and explain. (Chapter 7 is devoted to

an analysis of the complexity of commuting diagrams like Figure 5.11d.)

The need to support extensions first appeared when reverse engineering Up-

Right [CKL+09]. Extensions allowed us to conduct the process incrementally,

by starting with a simple PIM to PSM derivation, which was progressively en-
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hanced until we got a derivation that produced the desired PSM [RGMB12].

Later, when analyzing other case studies, we realized that the ability to model

feature-enhanced rewrite rules was useful even to just produce different PSMs

(that only differs in non-functional properties) for the same PIM. This happens

as we add features to boxes that are not visible externally (i.e., when looking to

the entire architecture, no change on functional properties is noticed).

Road Map. In the remainder of this chapter, we outline the key ideas needed

to encode extension relationships. We explain how we capture the extension

relationships in RDMs (so that they effectively express product lines of RDMs),

and how we can leverage from the extension relationships and the methodology

proposed to provide tools support to help developers to derive product lines of

PSMs.

5.2 Implementation Concepts

5.2.1 Annotative Implementations of Extensions

There are many ways to encode extensions. At the core of ReFlO is its ability to

store rewrite rules. For each rule, we want to maintain a (small) product line of

rules, containing a base rule and each of its extensions. For a reasonable number

of features, a simple way to encode all these rules is to form the union of their

elements, and annotate each element to specify when that element is to appear

in a rule for a given set of features.

We follow Czarnecki’s annotative approach [CA05] to encode product

lines. With appropriate annotations we can express the elements that are

added/removed by extensions, so that we can “project” the version of a rule

(and even make it disappear if no “projection” remains) for a given set of fea-

tures. So in effect, we are using an annotative approach to encode extensions

and product lines of RDMs, and this allows us to project an RDM providing a

specific set of features.
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Model elements are annotated with two attributes: a feature predicate and a

feature tags set. The feature predicate determine when boxes, ports, or connec-

tors are part of an RDM for a given set of features. The feature tags set is used

to determine how boxes are tagged/labeled (e.g., K is a tag for feature key).

Methodology. A user starts by encoding an initial RDM R that

allows him to derive the desired PSM from a given PIM. Then, for

each feature f ∈ F , the user considers each r ∈ R, adds the needed

model elements (boxes, ports, connectors), and annotates them to

express the f-extension of r. Doing so specifies how each rewrite rule

r evolves as each feature f is added to it. This results in a product

line of rewrite rules centered on the initial rule r and its extensions.

Doing this for all rules r ∈ R creates a product line of RDMs.

Of course, there can be 2n distinct combinations of n optional fea-

tures. Usually, when an f-extension is added, the user can take into

account all combinations of f with previous features. The rule bases

are not always complete though. Occasionally, the user may later re-

alise he needs additional rules for a certain combination of features.

5.2.2 Encoding Product Lines of RDMs

All RDMs of a product line are superimposed into a single artifact, which we

call an eXtended ReFlO Domain Model (XRDM). The structure of an XRDM is

described by the same UML class diagram metamodel previously shown (Fig-

ure 3.6). However, some objects of the XRDM have additional attributes de-

scribed below.

Boxes, ports, and connectors receive a new featuresPredicate attribute.

Given a subset of features S ⊆ F , and a model element with predicate P :

P(F) → {true, false} (where P denotes the power set), P(S) is true if and

only if the element is part of the RDM when S are the enabled features. We use

a propositional formula to specify P, where its atoms represent the features of

the domain. P(S) is computed evaluating the propositional formula associating
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true to the atoms corresponding to features in S, and associating false to the

remaining atoms.

Boxes have another new attribute, featuresTags. It is a set of abbreviated

features names that determines how a box is tagged. A tag is a prefix that is

added to a box name to identify the variant of the box being used (e.g., L and K

are tags of box L.K.WSERVER, specifying that this box is a variant of the WSERVER

with features L(ist) and K(ey)).2

Example: Recall our web server example. We initially defined

rewrite rule (WSERVER, pwserver) to specify a primitive implemen-

tation for WSERVER (see Figure 5.12a). Then we add feature key

(abbreviated as K) to this rewrite rule, which means adding a new

port (OK) to each box. As this port is only present when feature key

is enabled, those new ports are annotated with predicate key. More-

over, the boxes now provide extra behavior, therefore we need to add

K tag to each box. The result is depicted in Figure 5.12b (red boxes

show tags sets, and blue boxes show predicates). Finally, we add

feature list (abbreviated as L), which requires another port (OL) in

each box. Again, the new ports are annotated with a predicate (in

this case, list specifies the ports are only part of the model when

feature list is enabled). The set of tags of each box also receives an

additional tag L. The final model is depicted in Figure 5.12c.

(a)

key key{K}{K}

(b)

key key

{K,L}{K,L} list list

(c)

Figure 5.12: Incrementally specifying a rewrite rule.

2Connectors are not named elements, neither have behavior associated with them, therefore
they do not need to be tagged.
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This provides sufficient information to project the RDM for a specific set of

features from the XRDM. The XRDM itself also has an additional attribute,

featureModel. It expresses the valid combinations of features, capturing their

dependencies and incompatibilities, and it is specified using GuiDSL’s grammar

notation [Bat05].

5.2.3 Projection of an RDM from the XRDM

A new transformation is needed to map an XRDM to an RDM with the desired

features enabled. This transformation takes an XRDM, and a given list of active

features, and projects the RDM for that set of features. The projection is done by

walking through the different model elements, and hiding (or making inactive)

the elements for which its predicate is evaluated to false for the given list

of features. To simplify the predicates we need to specify, there are implicit

rules that determine when an element must be hidden regardless of the result of

evaluating its predicate. The idea is that when a certain element is hidden, its

dependent elements must also be hidden. For example, when a box is hidden,

all of its ports must also be hidden. A similar reasoning may be applied in other

cases. The implicit rules used are:

• if the lhs of a rewrite rule is hidden, the rhs is also be hidden;

• if a box is hidden, all of its ports are also be hidden;

• if an algorithm is hidden, its internal boxes and connectors are also hidden;

• if a port is hidden, the connectors linked to that port must also be hidden.

These implicit rules greatly reduce the amount of information we have to pro-

vide when specifying an XRDM, as we avoid the repetition of formulas. Taking

into account the implicit rules, the projection transformation uses the following

algorithm:

• For each rewrite rule:
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– If the predicate of its lhs interface box is evaluated to false, hide

the rewrite rule;

– For each port of the lhs interface, if the predicate of the port is

evaluated to false, hide the port;

– If the predicate of the rhs box is evaluated to false, hide the rhs

box;

– For each port of the rhs box, if the predicate of the port is evaluated

to false, hide the port;

– If the rhs is an algorithm, for each connector of the rhs algorithm:

∗ If the predicate of the connector is evaluated to false, hide the

connector;

– If the rhs is an algorithm, for each internal box of the rhs algorithm:

∗ If the predicate of the internal box is evaluated to false, hide

the internal box;

∗ For each port of the internal box, if the predicate of the port is

evaluated to false, hide the port and the connectors linked to

the port.

During projection, we also have to determine which tags are attached to each

box. Given the set F of feature to project, and given a box B with features tags

set S, the tags of B after the projection are given by S ∩ F . That is, S specifies

the features that change the behavior of B, but we are only interested in the

enabled features (specified by F).

Example: Considering the rewrite rule from Figure 5.12c, and

assuming we want to project feature K only, we would obtain the

model from Figure 5.13. Ports OK, which depend on feature K, are

present. However, ports OL, which depend on feature L, are hidden.

Additionally, boxes are tagged with K ({K} = {K, L} ∩ {K}).
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Figure 5.13: Projection of feature K from rewrite rule (WSERVER, pwserver) (note
the greyed out OL ports).

5.3 Tool Support

ReFlO was adapted to support XRDM and extensions. Besides minor changes to

the metamodels, and the addition of the RDM projection transformation, other

functionalities were added to ReFlO, namely to provide better validation, and to

help developers to replay a derivation after adding features to the RDM.

5.3.1 eXtended ReFlO Domain Models

When using extensions, we start defining an XRDM as if it was an RDM, i.e., we

specify the rewrite rules for the base (mandatory) features. Then, new elements

and annotations are incrementally added to the initial model, in order to support

other features. Typically, the new elements are annotated with a predicate that

requires the presence of the feature being defined for the element be present.

Boxes that receive new elements are also tagged. Occasionally elements previ-

ously added have their predicate changed, for example to specify they should be

removed in the presence a certain features.

Predicates are provided in featuresPredicates attribute of boxes, ports

and connectors, and are specified using a simple language for propositional for-

mulas that provides operators and (logical conjunction), or (logical disjunction),

implies (implication), and not (negation). An empty formula means true.

Tags are specified in attribute featuresTags, by providing a comma-

separated list of names. To make the tags more compact (improving the vi-

sualization of models), we allow the specification of alias that associate a shorter

tag name to a feature. Those alias are specified in attribute featuresTagsMap

of the XRDM, using a comma-separated list of pairs featurename : tagname.

The XRDM has another extra attribute, featureModel, that is used to spec-
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ify the feature model of the XRDM, i.e., the valid combinations of features the

XRDM encodes. As we mentioned previously, the feature model is specified

using the language from GuiDSL [Bat05].

Given an XRDM, users can select and project the RDM for a desired set

of features. ReFlO checks whether the selected combination of features is valid

(according to the feature model), and if it is, it uses the algorithm described in

Section 5.2.3 to project the XRDM into the desired RDM.

5.3.2 Program Architectures

Developers that use ReFlO start by providing a PIM, which is progressively

transformed until a PSM with the desired properties is obtained. Given the

XRDM, the developers have to select the set of features of the RDM they want

to use to derive the PSM. Moreover, they also provide the PIM with the desired

features (often all PIMs are expressed by the same graph, where only the box

tags vary, according to the desired set of features).

Most of the variability is stored at XRDM, and when deriving a PSM, there

is already a fixed set of features selected. This means the only additional in-

formation we have to store in architectures to support extensions are box tags.

Therefore, the metamodel of architectures is modified to store this information,

i.e., boxes now have a new attribute tags.

5.3.3 Safe Composition

Dataflow models must satisfy constraints in order to be syntactically valid. ReFlO

already provided dataflow model constraint validation. Before the introduction

of extensions, it would simply assume all elements were part of the model, and

apply its validation rules (see Section 3.2.3). With extensions, the validation

function was changed to check only whether the active elements form a valid

RDM. A more important question is whether all the possible RDMs obtained

from projecting subsets of features form a valid RDM. When annotating models,
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designers sometimes forget to annotate some model elements, leading to errors

that would be difficult to detect without proper tool support.3

ReFlO provides a mechanism to test if there is some product (or RDM) ex-

pressed by the SPL (XRDM) that is syntactically invalid. The implemented

mechanism is based on safe composition [CP06, TBKC07]. Constraints are de-

fined by the propositional formulas described below (built using the propositional

formulas of the model elements):4

• An implementation, if active, must have the same ports of its interface. Let

i1 be the propositional formula of the interface, and p1 be the propositional

formula of one of its ports. We know that p1⇒ i1. Let a the propositional

formula of the implementation, and p2 be the propositional formula of the

equivalent port in the implementation. The propositional formula a ⇒
(p1⇔ p2) must be true.

• An interface used to define an active algorithm must be defined (i.e., it has

to be the LHS of a rewrite rule). Let i2 be the propositional formula of the

interface used to define the algorithm, and i1 be the propositional formula

of the interface definition. The propositional formula i2 ⇒ i1 must be

true.

• An algorithm must have the same ports as its interface (i.e., the LHS

and RHS of a rewrite rule must have the same ports). Let p3 be the

propositional formula of a port of an interface used to define an algorithm,

i2 be the propositional formula of the interface, and p1 be the propositional

formula of the same port in the interface definition. The propositional

formula i2⇒ (p1⇔ p3) must be true.

• The input ports of interfaces used to define an algorithm must have one

and only one incoming connector. Let p3 be the propositional formula of

3In our studies, we noticed that we sometimes forget to annotate ports that are added for
a specific feature.

4We refer to the explicit propositional formula defined in the model elements in conjunction
with their implicit propositional formulas, as defined in Section 5.2.3.



5.3. Tool Support 139

an input port of an interface used to define an algorithm, and c1, . . . , cn be

the propositional formulas of its incoming connectors. The propositional

formula p3⇒ choose1(c1, . . . , cn)5 must be true.

• The output ports of an algorithm must have one and only one incoming

connector. Let p4 be the propositional of an output port of an algorithm,

and c1, . . . , cn be the propositional formulas of its incoming connectors.

The propositional formula p4⇒ choose1(c1, . . . , cn) must be true.

Let fm be the feature model propositional formula. To find combinations of

features that originate an invalid RDM, for each of the propositional formulas p

described above, and for each model element it applies to, we test the proposi-

tional formula fm∧¬p with a SAT solver.6 If there is a combination of features for

which one of those predicates is true, then that combination of features reveals

an invalid RDM. ReFlO safe composition test tells the developer if there is such

combination, and, in case it exists, the combination of features and the type of

problem detected. Given a combination that produces the invalid RDM, the de-

veloper may use ReFlO to project that features and validate the obtained RDM

(doing this, the developer obtains more precise information about the invalid

parts of the RDM, which allows him to fix them).

In addition, ReFlO can also detect bad smells, i.e., situations that, although

do not invalidate an RDM, are uncommon and likely to be incorrect. The two

case we detect are:

• The input of an algorithm is not used (i.e., a dead input). Let p be the

propositional formula of an input port of an algorithm, and c1, . . . , cn be

the propositional formulas of its outgoing connectors. The propositional

formula p⇒ choose(c1, . . . , cn) must be true.

5choose(e1, . . . , en) means at least one of the propositional formula e1, . . . , en is true, and
choose1(e1, . . . , en) means exactly one of the propositional formulas e1, . . . , en is true [Bat05].

6Although SAT solvers may imply a significant performance impact in certain uses, in this
particular kind of application, for the most complex case study we modeled (with 4 different
features, and about 40 rewrite rules) the test requires less than 2 seconds to run.
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• The output of an interface in an algorithm is not used (i.e., a dead output).

Let p be the propositional formula of an output port of an interface used

to define an algorithm, and c1, . . . , cn be the propositional formula of its

outgoing connectors. The propositional formula p ⇒ choose(c1, . . . , cn)

must be true.

In case there is a combination of features where a bad smell is detected, the

developer is warned, so that he can further check if the XRDM is correct.

5.3.4 Replay Derivation

When reverse engineering existing programs using ReFlO extensions, we start

with a minimal PIM and an RDM with minimal features, and the PIM is mapped

to a PSM. Later, an RDM and PIM with additional features is used, to produce a

new derivation of a PSM that is closer to the desired implementation. This new

derivation usually reuses the same transformations (or rather their extended

counterparts) to produce the PSM. Sometimes new transformations are also

required, or previously used transformations are not needed anymore.

Therefore, it is important to keep track of the sequence of transformations

used in a derivation, as it can be used to help producing a new derivation. ReFlO

stores the list of transformations used in a derivation. In this way, when trying

to obtain a derivation of PIM with a different set of features, developers can ask

ReFlO to replay the derivation. The user should select both the new PIM and the

previously derived PSM. ReFlO reads the transformations used in the previously

derived PSM, and tries to reapply the same sequence of transformation to the

new PIM.7 As mentioned earlier, new transformations may be needed (typical

when we added features to the PIM), or certain transformations may not be ap-

plicable anymore (typical when we remove features from the PIM). ReFlO stops

the replay process if it reaches a transformation it cannot successfully reapply,

either because is not needed anymore, or because an entirely new transforma-

tion is required in the middle of the derivation. After this point, the developer

7Box names do not change, they are only tagged. In this way it is easy to determine the
extended counterpart of a transformation used in a previous derivation.
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has to manually apply the remaining transformations, in case there are more

transformations needed to finish the derivation.





Chapter 6

Extension Case Studies

To validate our approach to encode extensions and product lines, we used ReFlO

on different case studies. This chapter is dedicated to two of those case stud-

ies. We start with a case study where a fault-tolerant server architecture is

reverse-engineered using extensions and our incremental approach. Later we

show another case study where different variants of an MD simulation program

are derived with the help of extensions.

6.1 Modeling Fault-Tolerant Servers

UpRight [CKL+09] is a state-of-the-art fault-tolerant server architecture. It

is the most sophisticated case study to which we applied extensions, and its

complexity drove us to develop its architecture incrementally, using extensions,

thereby creating a small product line of UpRight designs. The initial architec-

ture SCFT defines a vanilla RPA. Using refinements and optimizations, we show

how this initial program architecture is mapped to a PSM that is fault-tolerant.

Later, extensions (features) are added to provide recovery and authentication

support. Figure 6.1 shows the diagram of the product line that is explored in

this section.

We start with the initial PIM of UpRight.

143
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SCFT

R.SCFT

A.SCFT

A.R.SCFT

Figure 6.1: The UpRight product line.

6.1.1 The PIM

The initial PIM for this architecture is depicted in Figure 6.2a. It contains

clients (C boxes) that send requests to a server.1 The requests are first serialized

(Serial box), and then sent to the server (VS box). The server processes each

request in order (which involves updating the server’s state, i.e., the server is

stateful), and outputs a response. The response is demultiplexed (Demult box)

and sent back to the client that originated the request. The program follows

a cylinder topology, and the initial PIM is in fact the result of unrolling the

cylinder depicted in Figure 6.2b.

(a) (b)

Figure 6.2: The PIM.

6.1.2 An SCFT Derivation

The simplest version of UpRight implements a Synchronous Crash-Fault Tolerant

(SCFT) server, which has the ability to survive to failures of some components.

The design removes single points of failure (SPoF), i.e., boxes that if they failed

(stopped processing requests altogether), they would make the entire server ab-

1For simplicity, we have only two clients in the PIM. There may exist any number of clients;
our approach/tools supports its representation using replication.
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straction fail. For example, in the PIM, boxes Serial, VS and Demult are SPoF.

In this derivation, we show how SPoF are eliminated by replication [Sch90].

Figure 6.3: list algorithm.

The derivation starts by refining the VS box,

to expose a network queue in front of the server.

The list algorithm, depicted in Figure 6.3, is

used. This refinement places an L box (list or

queue) between the clients and the server, which

collects the requests sent by clients, and passes

them to the server, one at the time. The architecture obtained is depicted in

Figure 6.4.

Figure 6.4: SCFT after list refinement.

Figure 6.5: paxos algorithm.

Next, the network

queue and the server are

replicated, using a map-

reduce strategy, to in-

crease resilience to crashes

of those boxes. The paxos

algorithm (Figure 6.5)

replicates the network

queue [Lam98]. This algorithm forwards the input requests to different agree-

ment boxes A, that decide which request should be processed next.2 The requests

are then serialized and sent to the quorum box (Qa), which outputs the request

as soon as it receives it from a required number of agreement boxes.

2As for clients, we use only two replicas for simplicity. The number of replicas depends on
the number of failures to tolerate. The number of clients, agreement boxes and servers is not
necessarily the same.
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Figure 6.6: reps algorithm.

The reps algorithm

(Figure 6.6) replicates the

server. The algorithm re-

liably broadcasts (RBcast)

requests to the server repli-

cas. For correctness, it is

important to guarantee that

all servers receive each request in synchrony, thus the need for the reliable broad-

casts. The servers receive and process the requests in lock step, their responses

are serialized and sent to the quorum box (Qs) that outputs the response as

soon as it receives the same response from a required number of servers. The

architecture obtained is depicted in Figure 6.7.

Figure 6.7: SCFT after replication refinements.

Figure 6.8: Rotation optimization.

At this point, although

we improved the resilience to

crashes of the server, the en-

tire system contains even more

SPoF than the original (there

were originally 3 SPoF, and

now we have 8 SPoF). We

rely on optimizations to re-

move them. Rotation opti-

mizations, which swap the or-

der in which two boxes are

composed, remove SPoF.
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Figure 6.9: Rotation optimization.

The rewrite rules that ex-

press the optimizations needed

are depicted in Figure 6.8 and

Figure 6.9. These are templa-

tized rewrite rules, where b1

and b2 can be replaced with

concrete boxes. In the case of

Figure 6.9 both boxes b1 and

b2 are replicated as a result

of the rotation, thus the opti-

mization removes the SPoF as-

sociated with b1 and b2. In the case of Figure 6.8 only box b1 is replicated as

a result of the rotation, which means that this optimization alone is not enough

to remove the SPoF. As we show below, we sometimes have to apply more than

one optimization to remove all SPoF.

Figure 6.10: Rotation instantiation for Serial

and F.

As an example of instan-

tiation of these rewrite rules,

in Figure 6.9, b1 may be

Serial and b2 may be F (Fig-

ure 6.10). This instantiation

would remove the SPoF for the

composition Serial−F present

immediately after the client

boxes. Applying the same op-

timization at other points, as

well as its variant depicted in

Figure 6.8, allows us to com-

pletely remove SPoF from the system. For Serial−Qa−RBcast, we first rotate

Qa− RBcast, and then Serial− RBcast. For Serial− Qs− Demult, we follow

a similar process. In this way, we obtain the architecture from Figure 6.11.

An additional optimization is needed. It is well-known to the distributed
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Figure 6.11: SCFT after rotation optimizations.

systems community that reliable broadcast is expensive, and therefore should be

avoided. As quorums are taken from the requests broadcast, reliable broadcasts

can be replaced by simple (unreliable) broadcasts. (Although this step may not

be obvious for readers, it is common knowledge among domain experts.) After

this step, we obtain the desired SCFT architecture, depicted in Figure 6.12. This

is the “big-bang” design that was extracted by domain experts from UpRight’s

implementation.

Figure 6.12: The SCFT PSM.

6.1.3 Adding Recovery

There are other features we may want to add to our initial PIM. The SCFT

implementation previously derived improved resilience to failures. Still, a box

failure would be permanent, thus, after a certain amount of failures, the entire

system would fail.

The resilience to failures can be further improved adding recovery capabilities,

so that the system can recover from occasional network asynchrony (e.g., box

failures). We now show how the RDM used in the SCFT can be extended so

that an enhanced implementation of the SCFT with recovery capabilities, called

Asynchronous Crash-Fault Tolerant (ACFT), can be derived.

The first step is to Recovery-extend the SCFT PIM to the ACFT PIM. That

is, we want to show SCFT  R.SCFT, where ACFT = R.SCFT. The ACFT PIM is
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shown in Figure 6.13. Our goal is to map it to its PSM by replaying the SCFT

derivation using Recovery-extended rewrite rules.

Figure 6.13: The ACFT PIM.

{R} {R}

Recovery Recovery

Figure 6.14: list algorithm,

with recovery support.

As for SCFT, the first step in the ACFT

derivation is a refinement that exposes a net-

work queue in front of the server. The algo-

rithm has to be extended to account for recov-

ery. Boxes L and S are both extended so that

S can send recovery information to L. Thus,

tag R is added to the tags set of both boxes. S

gets a new output port that produces recovery

information, and L gets a new input port that

receives this information. Moreover, a new connector is added in algorithm list,

linking the new ports of S and L. The new ports are annotated with the predicate

Recovery, as they are only part of the RDM when we want the recovery prop-

erty. The result is the algorithm depicted in Figure 6.14.3 Using the extended

algorithm to refine the initial specification, we obtain the architecture shown in

Figure 6.15.

The next transformations in the ACFT derivation are the replication of boxes

L and S. Again, the algorithms previously used have to be extended to account

for recovery.

3Tags sets are not graphically visible in an XRDM. This happens as the XRDM expresses
all combinations of features, and the tags sets contains tags for features that change the
behavior of a box, namely for feature that may not be “enabled” in a particular derivation.
Architectures, on the other hand, have a fixed set of features, therefore tags are graphically
visible. In the figures of XRDM boxes, we use red boxes to show tags sets attribute, and blue
boxes to show predicates attribute.
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Figure 6.15: ACFT after list refinement.

{R}

RecoveryRecovery Recovery

Figure 6.16: paxos algorithm, with recovery support.

For paxos, a new input

port is added (to match

interface L). The A boxes

are also extended with

an equivalent input port.

Thus, tag R is added to the

tags set of box A. Addi-

tionally, a new RBcast box

is added, as well as the ap-

propriate connectors, to broadcast the value of the new input port of paxos to

the new inputs ports of A. The new ports of paxos and A, as well as box RBcast,

are annotated with predicate Recovery. The extended algorithm is depicted in

Figure 6.16.

{R}

Recovery Recovery Recovery Recovery

Figure 6.17: rreps algorithm, with recovery support.

For reps, a new out-

put port is added to

the algorithm box. As

mentioned earlier, S also

has an additionally out-

put port that provides the

values for the new output

port of the algorithm. The

values are first serialized

(Serial), and then sent to a quorum box (Qr), before being output. The new

ports of reps and S, and boxes Serial and Qr are annotated with predicate

Recovery. The appropriate connectors are also added. Tag R is added to the

tags set of box S. The extended algorithm is depicted in Figure 6.17.
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Note that interface Qr did not exist before. This is an example of a case

where new rewrite rules need to be added to the RDM, as part of an extension,

to handle new interfaces. Applying the refinements again, we obtain the program

depicted in Figure 6.18.

We have now reached the point where we have to use optimizations to remove

SPoF. Optimizations do not affect extended boxes, and therefore the optimiza-

tion rewrite rules do not need to be extended. We can just reapply their previous

definitions. Doing so, we obtain the architecture depicted in Figure 6.19.

Figure 6.19: ACFT after replaying optimizations.

Nevertheless, in this case previous optimizations are not enough. We need to

apply additional optimizations to the composition of boxes Serial−Qr−RBcast,

which are still SPoF in the architecture of Figure 6.19. The aforementioned com-

position of boxes can optimized also using rotations, similarly to the optimization

of Serial− Qa− RBcast. After these optimizations we obtain the architecture

depicted in Figure 6.20, with no SPoF, i.e., the PSM for the ACFT program.

Figure 6.20: The ACFT PSM.
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6.1.4 Adding Authentication

We saw earlier how the recovery feature mapped UpRight’s SCFT design, its

derivation and rewrites to UpRight’s ACFT design, its derivation and rewrites.

We now show how the ACFT server can be extended with another property,

Authentication, which is the next stage in UpRight’s design. This new system,

called AACFT (AACFT = A.R.SCFT), changes the behavior of the system by check-

ing the requests and accepting only those from valid clients. That is, the server

has now also validation capabilities, and therefore box R.VS receives a new tag

to express this new feature (producing box A.R.VS). The initial PIM for this new

derivation is shown in Figure 6.21.

Figure 6.21: The AACFT PIM.

{A,R} {R}

Recovery RecoveryAuthenticationnot Authentication

Figure 6.22: list algorithm, with recovery

and authentication support.

We now replay the ACFT

derivation to obtain the desired

implementation (PSM). The

list algorithm is A-extended,

to support authentication (Fig-

ure 6.22). This extension of list

requires a box V, which validates

and filters requests, to be added

before the network queue. The

new box is annotated with predicate Authentication. This also means

the previous connector that links input I of list to input I of L is not

present when authentication is being used (thus, it is annotated with predi-

cate not Authentication). After performing this refinement, the architecture

from Figure 6.23 is produced.
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Figure 6.23: AACFT after list refinement.

Figure 6.24: repv algorithm.

The previous replication al-

gorithms are not affected by

this new feature. However, a

new replication refinement is

needed, to handle the new box

V. For that purpose, we use the

algorithm repv (Figure 6.24)

to replicate V boxes using a map-reduce strategy, similar to the algorithm reps.

That is, input requests are broadcast, and after being validated in parallel, they

are serialized, and a quorum is taken. The resulting architecture is depicted in

Figure 6.25.

For the optimization step, we replay the optimizations used in the ACFT

derivation. However, the sequential composition of boxes Serial−F is no longer

present, which means the optimization that removes these SPoF is not applicable

anymore. Instead, we have two new groups of boxes forming SPoF: (i) Serial−
Bcast, and (ii) Serial − Qv − F (Figure 6.26). Rotations are once again used

to remove these SPoF, allowing us to produce the desired PSM, depicted in

Figure 6.27.

6.1.5 Projecting Combinations of Features: SCFT with

Authentication

We have enhanced the XRDM specifying extensions to support recovery and

authentication, besides the base fault-tolerance property. With only the infor-

mation already provided in the XRDM, there is yet another implementation we

can derive: SCFT with authentication, or ASCFT = A.SCFT. We can project
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the RDM that expresses the desired features, and replay the derivation to ob-

tain the implementation of ASCFT. The rewrite rules used for refinements, after

projected, result in the graphs depicted in Figure 6.28.

(a) (b)

(c)

(d)

Figure 6.28: Rewrite rules used in initial refinements after projection (note the
greyed out hidden elements, which are not part of the model for the current
combination of features).

Figure 6.29: The ASCFT PIM.

Given the initial PIM for ASCFT (Figure 6.29), ReFlO is able to replay the

derivation automatically (this derivation requires only a subset of the transforma-

tions used for the AACFT derivation), and produce the desired implementation,

depicted in Figure 6.30.
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Figure 6.2

Figure 6.13

Figure 6.29

Figure 6.21

Figure 6.12

Figure 6.20

Figure 6.30

Figure 6.27

R
A

A R

Figure 6.31: UpRight’s extended derivations.

Recap. We showed how different designs of UpRight were obtained using the

approach we propose. By using extensions we were able to encode and expose

deep domain knowledge used to build such designs. We derived an optimized

implementation that provides fault-tolerance. Later we improved fault-tolerance

by adding recovery capabilities, and we also added authentication support. For

the different combinations of features, we were able to reproduce the derivation.

Figure 6.31 illustrates the different derivations covered in this section.

6.2 Modeling Molecular Dynamics Simulations

Another case study we explored to validate our work was MD simulations.

The base implementation was the Java Grande Forum benchmark implemen-

tation [BSW+99], to which several other improvements are applied [SS11]. This

implementation provides the core functionality of the most computationally in-

tensive part of an MD simulation.

In this section we show how we can model a small product line of MD pro-

grams. The base PIM is mapped to optimized parallel implementations. Ex-

tensions are used to add further improvements, such as Neighbors, Blocking, and

Cells [SS11]. Figure 6.32 shows the diagram of the product line that is explored
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in this section (note that the Cells feature requires the Blocks feature).

MD

N.MD

B.MD

B.N.MD

C.B.MD

C.B.N.MD

Figure 6.32: The MD product line.

6.2.1 The PIM

MD simulations are typically implemented by an iterative algorithm. A list of

particles is updated at each iteration, until the particles stabilize, and some

computations are then done using the updated list of particles. The architecture

for the loop body of the program used is depicted in Figure 6.33, where we

have the UPDATEP that updates the particles (input/output p), and some other

additional operations to compute the status of the simulation.

Figure 6.33: MD loop body.

The most important part of the algorithm is the update of particles, as it is

computationally intensive, and contains the boxes that are affected by transfor-

mations. Therefore, in this section we use the architecture depicted in Figure 6.34

(that we call MDCore) as PIM. Besides input/output p, we also have input/output

epot (potential energy) and vir (virial coefficient).
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Figure 6.34: The MDCore PIM.

6.2.2 MD Parallel Derivation

We start by showing the derivation that maps the initial PIM to a parallel

implementation. Different choices of algorithms can be used to target the PIM

to different platforms, namely shared memory, distributed memory, or both.

We obtain the implementation that uses both shared and distributed memory

parallelization at the same time (the other two implementations can be obtained

removing one of the refinements used). The distributed memory parallelization

follows the SPMD model, where replicas of the program run on each processes.

All data is replicated in all processes, but each process only deals with a portion

of the total computation.

Figure 6.35: move forces algorithm.

The derivation starts by applying a

refinement that exposes the two steps of

updating the list of particles. The al-

gorithm used (depicted in Figure 6.35),

shows how the two steps are composed.

First the particles are moved (box MOVE),

based on the current forces among the

particles. Then the forces are recomputed based on the new positions of the

particles (box FORCES). This results in the architecture depicted in Figure 6.36.

The next step is to parallelize the operation FORCES for distributed memory

platforms, as shown in the algorithm depicted in Figure 6.37. The algorithm

starts by dividing the list of particles, so that each process (program replica) only

computes a subset of the forces [BSW+99]. This is done by box PARTITION, which

takes the entire set of particles, and outputs a different (disjoint) subset on each

program replica. In fact, the division of particles is only logical, and all particles
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Figure 6.36: MDCore after move forces refinement.

Figure 6.37: dm forces algorithm.

stay at all processes, as

each process computes

the forces between a

subset of the particles

and all other particles.

Thus, during this pro-

cess all particles may be

updated, which requires

reduction operations at

the end. This is done by boxes ALLREDUCEF and ALLREDUCE. The former is an

AllReduce operation [For94] specific to the list of particles, which only applies

the reduction operation to the forces of each particle. The latter is a generic

AllReduce operation, in this case being applied to scalars. This transformation

results in the architecture depicted in Figure 6.38.

Figure 6.38: MDCore after distributed memory refinement.
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Figure 6.39: sm forces algorithm.

The derivation is

concluded with paral-

lelization of FORCES for

shared memory plat-

forms, using the algo-

rithm depicted in Fig-

ure 6.39. This paral-

lelization is similar to the one used before for distributed memory. It also starts

by dividing the list of particles. However, in this case, the forces of particles are

physically copied to a different memory location, specific to each thread. This

is done by box SMPARTITION. As the data is moved, the forces computation has

to take into account the new data location, thus a different SMFORCES operation

is used. Additionally, this operation also has to provide proper synchronization

when updating epot and vir values (that store the global potential energy and

virial coefficient of the simulation), which are shared among all threads. In the

end, the data computed by the different threads has to be joined, and moved

backed to the original location. This is done by box REDUCEF, which implements

a Reduce operation. epot and vir do not need to be reduced, as their values

are shared among all threads. This transformation results in the architecture

depicted in Figure 6.40, or equivalently the flattened architecture in Figure 6.41.

Figure 6.40: MDCore after shared memory refinement.

6.2.3 Adding Neighbors Extension

One common optimization applied to MD simulations consists in pre-computing

(and caching) the list of particles that interact with any other particle [Ver67].
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Figure 6.41: The MDCore PSM.

This improves performance as forces between particles that are not spatially close

can be ignored, therefore by caching the pairs that interact we can reduce the

O(N2) complexity. We call this optimization Neighbors, as this pre-computation

essentially determines the neighbors of each particle. This optimization may

or may not change the behavior of the simulation,4 but we still use extensions

to model this optimization, as it requires the extension of the behavior of the

internal boxes used by the program.

The starting point for this derivation is the Neighbors-extended PIM (called

NMDCore), depicted in Figure 6.42, which uses the tagged UPDATEP operation.

Figure 6.42: The NMDCore PIM.

From this PIM, we replay the previous derivation, starting with the

move forces algorithm. The algorithm is extended as shown in Figure 6.43,

in order to support the Neighbors feature. Box NEIGHBORS, which does

the pre-computation, is added. Box FORCES is extended to take into ac-

count the data pre-computed by NEIGHBORS, and receives a new input

port (N). The appropriate connectors are also added, to provide the list

of particles to NEIGHBORS, and to provide the neighbors data to FORCES.

4If we “relax” the correction criteria of the simulation (and therefore change the behavior
of the program), we can improve performance.
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{N}

NeighborsNeighbors

Figure 6.43: move forces algorithm, with neighbors

support.

As the behavior of FORCES

changes, tag N is added to

the tags set of this box.

The new box and the new

input port are annotated

with predicate Neighbors,

to denote that they are

only part of the model

when we want the neigh-

bors feature. This transfor-

mation results in the architecture depicted in Figure 6.44.

Figure 6.44: NMDCore after move forces refinement.

NeighborsNeighbors

{N}

Figure 6.45: dm forces algorithm, with neighbors support.

We proceed with

the transformations

to parallelize the

FORCES operation.

First we add dis-

tributed memory

parallelism, by us-

ing the dm forces

algorithm. As the

FORCES operation

was extended, we

have to extend their implementations too. Figure 6.45 depicts the Neighbors-



6.2. Modeling Molecular Dynamics Simulations 165

extended dm forces algorithm. Essentially, we need to add the new input

port N to the algorithm box and to the FORCES box, and a connector linking

these two ports is added. The new input ports are annotated with predicate

Neighbors. As we mentioned before, N is added to the tags set of FORCES. This

transformation results in the architecture depicted in Figure 6.46.

Figure 6.46: NMDCore after distributed memory refinement.

Figure 6.47: Swap optimization.

With the previous

refinement, although we

only apply the FORCES

operation to a subset of

the particles (the op-

eration appears after

the PARTITION opera-

tion), the same does

not happens with the

NEIGHBORS operation

that is applied to the

full set of particles, even though only a subset is need, and therefore this opera-

tion is not parallelized. However, a simple optimization can be used to swap the

order of the PARTITION and the NEIGHBORS operations (when both operations

appear immediately before a FORCES operation). This optimization is expressed

by the templatized rewrite rules depicted in Figure 6.47. Boxes part and

forces may either be PARTITION and FORCES, or SMPARTITION and SMFORCES

(i.e., this optimization can also be used to optimize an inefficient composition
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of boxes that results from the shared memory refinements, as we will see later).

This optimization results in the architecture depicted in Figure 6.48.

Figure 6.48: NMDCore after distributed memory swap optimization.

NeighborsNeighbors

{N}

Figure 6.49: sm forces algorithm, with neighbors support.

Next we ap-

ply the refinement

for shared mem-

ory parallelization.

The algorithm used

in this refinement

(sm forces) needs

to be extended in

a similar way to

dm forces, so that it supports the Neighbors feature. It is depicted in Fig-

ure 6.49. This transformation results in the architecture depicted in Figure 6.50.

Figure 6.50: NMDCore after shared memory refinement.

We need again to use the swap optimization so that the neighbors are com-

puted in parallel too. As we saw before, the optimization from Figure 6.47 can

also be applied in the architecture from Figure 6.50 (after flattening it), yielding

the architecture depicted in Figure 6.51.
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Figure 6.51: The NMDCore PSM.

6.2.4 Adding Blocks and Cells

When the set of particles is large enough to not fit in cache, there are additional

optimizations that may be made to the program [YRP+07]. The use of a cache

can be improved by using algorithms by Blocks, which divide the set of particles in

blocks that fit into the cache (similarly to the blocked algorithms used in DLA).

This feature does not really change the structure of the algorithm; we simply need

to use boxes that are prepared to deal with a list of blocks of particles, instead

of a list of particles. Thus, the optimized architecture is obtained replaying the

previous derivation, but now some boxes have an additional tag B. The final

architecture is depicted in Figure 6.52.

Figure 6.52: The BNMDCore PSM (NMDCore with blocks).

The blocks feature is important as it enables yet another optimization, which

we call Cells [SS11]. Whereas the blocks feature just divides the list of particles

in blocks randomly, the cells feature rearranges the blocks so that the particles in

each block are spatially close, i.e., the division in blocks is not random anymore.

As particles interact with other particles that are spatially close to them, by

rearranging the division of particles, for a given particle, we can reduce the list
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of particles we have to check (to decide whether there will be interaction) to those

particles that are in blocks spatially close to the block of the given particle. When

we have the Neighbors feature, the same reasoning may be applied to optimize

the computation of the neighbors list.

The starting point for this derivation is the PIM extended with features

Neighbors, Blocks, and Cells (called CBNMDCore), depicted in Figure 6.53, that

uses the UPDATEP operation tagged with C, B, and N.

Figure 6.53: The CBNMDCore PIM.

{C,B,N}

NeighborsNeighborsCells not Cells

{C,B}{B}

Figure 6.54: move forces algorithm, with support for

neighbors, blocks and cells.

From this PIM,

we replay the pre-

vious derivation, us-

ing the move forces

algorithm. This al-

gorithm is extended

again, as shown in

Figure 6.54. Box

PSORT is added to re-

arrange the list of

blocks of particles

after moving the particles. These new rearranged list of blocks must then be

used by boxes NEIGHBORS and FORCES. Thus, new connectors link the output

of PSORT with NEIGHBORS and FORCES. Boxes NEIGHBORS and FORCES receive

an additional tag C. The new PSORT box is annotated with predicate Cells.

Additionally, the old connectors providing the list of blocks to boxes NEIGHBORS

and FORCES shall not be used when this feature is enabled, therefore those con-

nectors are annotated with predicate not Cells. This transformation produces

the architecture depicted in Figure 6.55.
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Figure 6.55: CBNMDCore after move forces refinement.

We proceed with the transformations to parallelize the FORCES operation.

First we add distributed memory parallelism, by using the dm forces algorithm

and swap optimization. Then we add shared memory parallelism, by using the

sm forces algorithm and the swap optimization again. Other than adding tag

C to boxes NEIGHBORS, FORCES, PARTITION, and SMPARTITION, there is no other

change to the (X)RDM. After we reapply the transformations we obtain the

architecture depicted in Figure 6.56, which is the final PSM.

Figure 6.56: The CBNMDCore PSM.

Recap. We showed how we can encode the knowledge needed to obtain dif-

ferent MD simulations programs. We derived optimized implementations that

use shared and distributed memory parallelism, and we showed how we can ob-

tain four variants (with different optimizations) of the program for this target

platform. Figure 6.57 illustrates the different derivations covered in this section.

Even though we only show derivations for one target platform, by removing

some transformations from the derivation, we would be able to target shared

memory platforms, and distributed memory platforms (individually). Moreover,

besides the four combinations of features illustrated in this section, there are

two other combinations of features we could use (as shown in Figure 6.32, we
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Figure 6.41

Figure 6.51

Figure 6.34

Figure 6.42

Figure 6.53

Figure 6.56

Figure 6.52

N
B

C

C

B N

N

Figure 6.57: MD’s extended derivations.

could also use combination of features B.MDCore, and C.B.MDCore). This means

the knowledge encoded in the XRDM used for MD is enough to obtain a total

of 18 optimized architectures (PSMs), targeting different platforms, and provid-

ing different features (optimizations), which users can enable according to their

needs. That is, they can take advantage of a certain feature if the problem they

have at hands benefits from using that feature, but they also avoid the downsides

of the feature (overheads, load balancing problems, etc.) if the feature does not

provide gains to compensate the downsides in a particular simulation.

The same set of PSMs could be obtained using refinements only. However,

it would required multiple variants of algorithms to be modeled separately (for

example, we would need the 6 different variants of move forces algorithm to

be modeled individually), leading to replicated information, which complicates

development and maintenance.



Chapter 7

Evaluating Approaches with

Software Metrics

We believe derivational explanations of dataflow designs are easier to understand

and appreciate than a big-bang presentation of the final graph. Controlled ex-

periments have been conducted to test this conjecture. The first experiments,

which tried to measure (compare) the knowledge of the software acquired by

users when exposed to the big-bang design and when exposed to the derivation,

were inconclusive and did not show a significative advantage or disadvantage of

using a derivational approach [FBR12]. Additional controlled experiments were

conducted to determine the users perception of the derivational approach, to

find out which method users (in this case, Computer Science students) prefer,

and which method they think is better to implement, maintain, and comprehend

programs. In this study, students showed a strong preference for the use of a

derivational approach [BGMS13]. Despite some comments that the derivational

approach has, in certain cases, too much overhead, and that such overhead is

unjustifiable if the big-bang design is simple enough to be understood as a whole,

the large majority of users comments were favorable to the derivational approach.

Users pointed that the derivational approach allows them to divide the problem

is smaller pieces, easier to understand, implement, and extend. Users also noted

that the structure used to encode knowledge makes it easier to test the individual

171
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components of the program, and detect bugs earlier.

In this chapter we report an alternative (and supportive) study based on

standard metrics (of McCabe and Halstead) to estimate the complexity of source

code [Hal72, Hal77, McC76]. We adapt these metrics to estimate the complexity

of dataflow graphs and to understand the benefits of DxT derivations of dataflow

designs w.r.t. big-bang designs—where the final graph is presented without en-

coding/documenting its underlying design decisions.

7.1 Modified McCabe’s Metric (MM)

McCabe’s cyclomatic complexity is a common metric of program complex-

ity [McC76]. It counts the linearly independent paths of a graph that represent

the control flow of a program. This metric is important in software testing as it

provides the minimum number of test cases to guarantee complete coverage.

We adapted this metric to measure the complexity and effort to understand

dataflow graphs. Our metric measures the length (number of boxes) of a maximal

set of linearly independent paths of a dataflow graph. Cyclomatic complexity

captures the structure of the graph by considering all linearly independent paths

(which basically increases as more outgoing edges are added to boxes). Our

intuition goes beyond this to say that the number of boxes in a path also impacts

the effort needed to understand it. Hence, our metric additionally includes the

path length information.

We abstract DxT graphs to simple multigraphs by ignoring ports. For exam-

ple, the dataflow graph of Figure 7.1a is abstracted to the graph of Figure 7.1b.

(a)

I

IL

SPLIT
MERGE

PROJECT

PROJECT*
O

(b)

Figure 7.1: A dataflow graph and its abstraction.
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The graph from Figure 7.1b has 4 linearly independent paths:

• I→ SPLIT→ PROJECT→ MERGE→ O

• I→ SPLIT→ PROJECT∗ → MERGE→ O

• IL→ PROJECT→ MERGE→ O

• IL→ PROJECT∗ → MERGE→ O

The sum of the lengths of (number of interface nodes in) each path is 3+3+2+2 =

10. This is our measure of the complexity of the dataflow graph of Figure 7.1a.

The complexity of a set of graphs is the sum of the complexity of each graph

present in the set. The complexity of a derivation is the complexity of a set of

graphs that comprise (i) the initial dataflow graph of the program being derived,

and (ii) the RHS of the rewrite rules used in the derivation. If the same rewrite

rule is used more than once in a derivation, it is counted only once (as the rewrite

rule is defined once, regardless of the number of times it is used).1

As an example, consider the derivation in Figure 7.2, previously discussed

in Section 3.1. Figure 7.2e shows the final graph, which can be obtained incre-

mentally transforming the initial graph shown in Figure 7.2a. From Figure 7.2a

to Figure 7.2b, algorithms parallel project and parallel sort are used to

refine PROJECT and SORT, respectively. From Figure 7.2b to Figure 7.2c we re-

move the modular boundaries of the algorithms previously introduced. From

Figure 7.2c to Figure 7.2d we replace the subgraph identified by the dashed red

lines, using the optimization specified by the rewrite rules previously depicted in

Figure 3.13. After flattening Figure 7.2d, the final graph is obtained.

We measure the complexity of this derivation to be: 2 (initial graph) + 3

+ 3 (parallel project) + 3 + 3 (parallel sort) + 2 + 2 + 2 + 0 + 0

(optimization2) = 20. The complexity of the final or big-bang graph is 4 + 4 =

1This is also the typical procedure when measuring the complexity of a program’s source
code. We take into account the complexity of a function/module, regardless of the number of
times the function/module is used in the program.

2ms mergesplit has three linearly independent paths of size 2. ms identity has two
linearly independent paths of size 0.



174 7. Evaluating Approaches with Software Metrics

(a)

(b)

(c)

(d)

(e)

Figure 7.2: A program derivation.

8. In this case, we would say that the derivation is more than twice (20
8

= 2.5)

as complex as the big-bang.

We attach no particular significance to actual numbers for our Modified Mc-

Cabe (MM) metric; rather what we do consider useful is the ratio of MM num-

bers:
MMbigbang
MMDxT

. In this study, we consider that a ratio bigger 1.5 is significant; a

ratio between 1.25 and 1.5 is noticeable, and a ratio less than 1.25 is small. In

the results presented we also use the signs “–” and “+” to specify whether the

big-bang or the derivation is the best approach, respectively.

In the next sections we provide results for different case studies using MM
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where we compare the big-bang and derivational approaches.

7.1.1 Gamma’s Hash Joins

Table 7.1 shows the MM complexity of Gamma’s Hash Joins and Gamma’s

Cascading Hash Joins.

Big Bang Derivation Difference
HJoin (short) 26 21 +small
HJoin (long) 26 57 –significant
Casc. HJoin (long) 92 68 +noticeable
HJoin + Casc. HJoin (long) 118 74 +significant

Table 7.1: Gamma graphs’ MM complexity.

HJoin (short) presents the MM number obtained for Gamma’s Hash Join

big-bang graph and its 2-step DxT derivation [GBS14]. The complexity of the

big-bang graph is 26 and the complexity of the derivation is 21. The reason why

the derivation has lower complexity is because it reuses one of the rewrite rules

twice. Still, the difference is small.

HJoin (long) lists complexity for the “standard” 7-step derivation of Gamma

(presented in Section 4.1.1). It is 57, well over twice that of the big-bang (26).

The reason is that it exposes considerably more information (refinements and

optimizations) in Gamma’s design. The difference in this case is significant.

Reuse makes the complexity of the derivation lower than the complexity of

the final graph. This is visible in the values for Casc. HJoin (long), which shows

complexity numbers for Cascading Hash Join (described in Section 4.1.2). In

the derivation of this program all rules needed for Hash Join are used twice, and

an additional optimization is also needed. This makes the big-bang approach

noticeably more complex than the derivational approach.

In the last row (HJoin + Casc. HJoin (long)) we consider both programs at

the same time. That is, for the final graphs column we count the complexity of

the final graph for Hash Joins and the complexity of the final graph for Cascading

Hash Joins. For the derivation column, we count the complexity of the initial

graph for each program, and the complexity of the rewrite rules’ graphs used in
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each derivation. Reuse is further increased, which makes the big-bang approach

significantly more complex (118
74

= 1.58) than the derivational approach.

7.1.2 Dense Linear Algebra

Table 7.2 shows the results of measuring the complexity in DLA domain consid-

ering the two different programs described in Section 4.2, Cholesky factorization

and LU factorization, each targeting three different hardware platforms. As

usual, we provide complexity results for the final graphs and their derivations.

Big Bang Derivation Difference
Chol (blk) 15 21 –noticeable
Chol (unblk) 6 23 –significant
Chol (dm) 28 43 –significant
LU (blk) 8 13 –significant
LU (unblk) 8 15 –significant
LU (dm) 24 40 –significant
Chol + LU 89 94 –small

Table 7.2: DLA graphs’ MM complexity.

The first three rows show complexity values for blocked, unblocked and dis-

tributed memory implementations of Cholesky factorization. The big-bang ap-

proach is always the best, and the difference is noticeable in one case, and

significant in the other two.

The next three rows show complexity values for implementations of LU factor-

ization for the three target hardware platforms mentioned before. The big-bang

approach is again the best, and the differences are significant in all cases.

Row Chol + LU shows the results for the case where we consider all imple-

mentations (blocked, unblocked and distributed memory) for both programs at

the same time. The complexity of the derivations is still higher than the final

graphs, but now the difference is small.

We can see that as more programs are added to the domain, the disadvantage

of the derivational approach gets smaller. This can be easily explained by the

reuse of knowledge in the same domain. That is, as new programs are added,

less and less new rules are needed, as they are likely to have been added before
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for the derivation of a previous program. Therefore, the complexity grow of

supporting new programs is smaller in the derivational approach than in the

big-bang graphs.

7.1.3 UpRight

Table 7.3 lists the complexity of variations of UpRight, supporting different sets

of functional or non-functional properties.

Big Bang Derivation Difference
SCFT 88 76 +small
ACFT 164 164 none
ASCFT 150 101 +noticeable
AACFT 242 183 +noticeable
UpRight All 644 390 +significant

Table 7.3: SCFT graphs’ MM complexity.

Row SCFT refers to the SCFT server derivation (presented in Section 6.1.2).

The derivation is simpler than the big-bang, but the difference is small. Row

ACFT refers to the ACFT server derivation, which adds recovery capabilities

to SCFT (as described in Section 6.1.3). In this case, both approaches have

basically the same complexity. Row ASCFT refers to the SCFT server with au-

thentication, which adds authentication to SCFT (as described in Section 6.1.5).

The derivation is simpler than the big-bang, and the difference is noticeable.

Row AACFT refers to the ACFT server with authentication, that is, SCFT with

recovery and authentication capabilities (as described in Section 6.1.4). The

derivation is simpler than the big-bang, and the difference is again noticeable.

Finally, row UpRight All shows the results for the case where all variations

are considered together. The complexity of the big-bang approach is equal to

the sum of the complexity of each individual variant. For derivations, rewrite

rules are reused, which contributes for a lower grow in complexity. As a result,

the big-bang approach is now significantly more complex (644
390

= 1.65) than the

derivational approach.
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7.1.3.1 Extensions

We considered four different variants of UpRight. Those variants can be mod-

eled independently, but as we saw earlier (Section 6.1), due to the similarities

between some of the rewrite rules used, we can use extensions to simplify the

definition of the RDM. This further increases reuse of rewrite rules, and reduces

the complexity associated with the graphs used in the derivational approach. In

Table 7.4 we report the impact of using extensions in graphs’ complexity.

Big Bang Derivation Difference
UpRight (ext.) 644 183 +significant
UpRight (ext. all) 302 183 +significant

Table 7.4: UpRight variations’ complexity.

For UpRight (ext.) we used extensions to model the rewrite rules used in

the derivations, which reduces the complexity of the derivation, as expected

(several rewrite rules are superimposed in a single rewrite rule). Therefore, the

derivational approach becomes even better than the big-bang approach.

For UpRight (ext. all) we use extensions not only for rewrite rules, but also

for the initial and final graphs, that is, the different initial/final graphs are also

superimposed (i.e., extensions are useful not only to model rewrite rules, but

may also be used to model programs). Even though the complexity of the final

graphs is reduced to less than a half, it is still significantly more complex

(302
183

= 1.65) than the derivational approach. This is consistent with the idea

presented in [RGMB12], that extensions are essential to handle complex software

architectures.

7.1.4 Impact of Replication

ReFlO provides a compact notation to express ports, boxes and connectors that

may appear a variable number of times in the same position (see Section 3.2.1.3).

Replication reduces the number of boxes and connectors, simplifying repetitive

graphs, which results in simpler graphs/models. In Table 7.5 we provide results
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for complexity for three of the case studies previously analysed, where we applied

replication.

Big Bang Derivation Difference
HJoin (long) 13 31 –significant
HJoin + Casc. HJoin (long) 51 40 +noticeable
SCFT 11 28 –significant

Table 7.5: MM complexity using replication.

The use of simpler graphs for initial graphs, final graphs, and rewrite rules

results in lower MM complexities for both the big-bang and derivational ap-

proaches. However, comparing these values with the ones previously presented,

we can observe different levels of reduction of complexity for each approach. That

is, the reduction of complexity resulting from the use of replication is typically

higher in the big-bang approach, which sometimes changes the relation between

the approaches (e.g., for SCFT, the big-bang approach is now significantly less

complex than the derivational approach).

Replication simplifies complex dataflow graphs, so these observations are in

line with those we presented previously. However, we cannot evaluate the impact

of the additional annotations required by replication, to fully understand whether

replication is really beneficial or not, and to be able to properly compare the big-

bang and derivational approaches.

7.2 Halstead’s Metric (HM)

Halstead proposed metrics to relate the syntactic representation of a program

with the effort to develop or understand it [Hal72, Hal77]. The metrics are based

on the number of operators and operands present in a program. The following

properties are measured:

• the number of distinct operators used in the program (η1);

• the number of distinct operands used in the program (η2);

• the total number of operators used in a program (N1); and
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• the total number of operands used in a program (N2).

Given values for the above, other metrics are computed, namely the program’s

volume (V), difficulty (D), and effort (E) to implement. Let η = η1 + η2, and

N = N1 + N2, the following equations are used to compute the properties:

• V = N× log2(η)

• D = η1/2× N2/η2

• E = V× D

Volume captures the amount of space needed to encode the program. It is

also related to the number of mental comparisons we have to make to search for

an item in the vocabulary (operands and operators). Difficulty increases as more

operators are used (η1/2). It also increases when operands are reused multiple

times. This metric tries to capture the difficulty of writing or understanding the

program.3 Finally, effort captures the effort needed to implement the program,

and it is given by the volume and the difficulty of a program.

Nickerson [Nic94] adapted this metric to visual languages, like that of ReFlO.

In this case, graph nodes (boxes) are operators, and edges (connectors) are

operands. We consider edges with the same origin (source port) as reuse of

the same operand.

As an example, consider the dataflow program from Figure 7.1a. We have

unique boxes parallel project, SPLIT, PROJECT, and MERGE, therefore η1 =

4. PROJECT is used twice, therefore N1 = 5. We have 8 edges, two of them

3The difficulty value is supposed to be in the interval [1,+∞), where a program with
difficulty 1 would be obtained in a language that already provides a function that implements
the desired behavior. In this case, we would need 2 (distinct) operators, the function itself,
and an assignment operator (or some sort of operator to store the result). The number of
operands would be equal to the number of inputs and outputs (say n = ni + no), which
would also be the number of distinct operands. Therefore, the difficulty would be given by
D = 2/2× n/n = 1. Our adaptation of the metric is consistent with this rule, as any program
directly implemented by a box has D = 1. Note, however, that an identity program (that
simply outputs its inputs), can be implemented simply using the assignment operator and
therefore it has D = 1/2× n/n = 1/2. The same happens for a dataflow program that simply
outputs its input.
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with source parallel project.IL, therefore η2 = 7, and N2 = 8. Given these

measures, we can now compute the remaining metrics:

• η = η1 + η2 = 4 + 7 = 11

• N = N1 + N2 = 5 + 8 = 13

• V = N× log2(η) = 13× log2(11) ≈ 44.97

• D = η1/2× N2/η2 = 4/2× 8/7 ≈ 2.28

• E = V× D = (13× log2(11))× (4/2× 8/7) ≈ 102.79

For a set of dataflow graphs, the volume and effort is given by the sum of the

volume and the effort of each graph present in the set. The difficulty of the set

is computed dividing its effort by its volume.

We now present the values obtained applying this metric to the same case

studies used in Section 7.1. In HM, effort is the property that takes into account

the volume/size and structure of the graphs, thus we believe the effort is the

property computed by HM comparable to the complexity given by the MM.4 For

this reason, in this section we relate the values for effort with the complexity

values previously obtained.

7.2.1 Gamma’s Hash Joins

Table 7.6 shows the results obtained using HM for Gamma’s Hash Joins and

Gamma’s Cascading Hash Joins dataflow graphs, and some of its derivations.

The case studies used are the same used as in Table 7.1.

If we compare the columns E for the big-bang and derivational approaches

with the values for complexity obtained with MM (previously shown in Ta-

ble 7.1), we notice that the results can be explained in a similar way, even

though the Differences are not exactly the same. As for MM, in HJoin (short),

4In Section 7.4 we show that the values obtained for complexity (MM) and effort (HM)
are strongly correlated.
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Big Bang Derivation Difference
V D E V D E E

HJoin (short) 97.5 3 292.6 97.0 1.88 182.4 +significant
HJoin (long) 97.5 3 292.6 262.5 2.02 529.9 –significant
Casc. HJoin (long) 217.7 3 653.0 312.6 1.92 600.3 +small
HJoin + Casc. HJoin (long) 315.2 3 945.5 324.2 1.89 611.9 +significant

Table 7.6: Gamma graphs’ volume, difficulty and effort.

we have a lower value for the derivational approach (although now the difference

is significant). The benefits of using the derivational approach (in terms of effort

according to HM) disappear if we choose the long derivation (HJoin (long)). As

for MM, in Casc. HJoin (long) and HJoin + Casc. HJoin (long), the benefits of

the derivational approach, even using the long derivation, become present again.

Thus, HM also indicates that the derivational approach, when the reusability of

rewrite rules is low and/or when optimizations are needed, is likely to be more

complex/require additional effort. Moreover, as reuse increases, the benefits of

the derivational approach increase.

We have, however, new metrics provided by HM. It is important to note that

even though the derivational approach may require more effort when we have few

opportunities for reuse and optimizations, the difficulty of the derivational ap-

proach is still typically lower than the difficulty of the big-bang approach. That

is, even in those cases, the derivational approach contributes to make the repre-

sentation of the program simpler (the additional effort results from the volume

of the derivational approach, which is bigger than in the big-bang approach).

7.2.2 Dense Linear Algebra

Table 7.7 shows the results obtained using HM in the DLA programs.

In these case studies the results obtained using MM and HM are different.

Whereas with MM the big-bang approach was always better than the derivational

approach, with HM we conclude the derivational approach is sometimes better.

Still, we can see a similar trend with both metrics: when we add more programs

to be derived, the increase in complexity/effort is higher in the big-bang approach
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Big Bang Derivation Difference
V D E V D E E

Chol (blk) 49.0 3 147.1 110.3 2.08 229.9 –significant
Chol (unblk) 32.3 2.25 72.6 146.3 1.95 285.8 –significant
Chol (dm) 118.9 5.7 677.7 256.4 2.21 567.0 +small
LU (blk) 35.8 2.67 95.6 67.1 1.89 126.8 –noticeable
LU (unblk) 35.8 2.67 95.6 85.15 1.92 163.6 –significant
LU (dm) 109.4 6.15 673.0 253.3 2.15 544.4 +small
Chol + LU 381.3 4.62 1761.7 557.4 1.95 1088.6 +significant

Table 7.7: DLA graphs’ volume, difficulty and effort.

than in the derivational approach. That is, for the individual implementations

we have four cases where the big-bang approach is better (with noticeable

and significant differences), and two cases where the derivational approach is

better (but with a small difference). When we group all implementations of

both programs, the derivational approach becomes the best, and the difference

becomes significant.

Moreover, as for Gamma’s Hash Joins, we can also observe that the use of

the derivational approach results in a bigger volume, but also in lower difficulty.

7.2.3 UpRight

Table 7.8 shows the results obtained using the HM for the variants of UpRight.

As before, the case studies used are the same used to obtain the values presented

in Table 7.3.

Big Bang Derivation Difference
V D E V D E E

SCFT 229.1 5 1145.6 378.0 2.02 762.5 +significant
ACFT 311.5 5.5 1713.4 590.8 2.13 1255.9 +noticeable
ASCFT 325.9 6.5 2118.6 550.5 1.96 1076.3 +significant
AACFT 405.9 6.5 2638.4 763.3 2.06 1572.6 +significant
UpRight All 1272.5 5.99 7616.0 1169.6 2.20 2573.8 +significant

Table 7.8: SCFT graphs’ volume, difficulty and effort.

Again, the analysis of these results for effort is similar to the analysis we

made for the results obtained using MM (Table 7.3). The derivational approach
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provides the best results. We see an increase in the benefits of the derivational

approach when we consider all programs together. As for the domains anal-

ysed previously in this section, we can observe that the use of the derivational

approach results in a bigger volume (except when all programs are considered

together), but lower difficulty.

7.2.3.1 Extensions

Table 7.9 shows the results obtained for the HM when using extensions.

Big Bang Derivation Difference
V D E V D E E

UpRight (ext.) 1272.5 5.99 7616.0 838.5 2.20 1476.8 +significant
UpRight (ext. all) 410.0 7.02 2878.1 690.0 2.14 1476.8 +significant

Table 7.9: UpRight variations’ volume, difficulty and effort.

When we use extensions to model the variations of the rewrite rules used in

the derivations, we can further increase the reuse of rewrite rules, reducing the

effort associated with the derivations, as shown in the row UpRight (ext.).

When the same approach is used for the initial and final graphs, the effort

associated with the final graphs is reduced to less than a half, but the effort

associated with the derivations is still significantly lower (row UpRight (ext.

all)).

As for the MM, these numbers support the observation made in [RGMB12]

that extensions are essential to handle complex software architectures.

7.2.4 Impact of Replication

In Table 7.10 we provide the values obtained with the HM for the case studies

where replication was used.

The use of replication results in lower values for volume and effort. The

difficulty is not affected significantly. As for MM, we verify that the reduction

of effort is typically bigger in the big-bang approach than in the derivational

approach.
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Big Bang Derivation Difference
V D E V D E E

HJoin (long) 60 3 180 190.6 2.03 386.0 –significant
HJoin + Casc. HJoin (long) 170.6 3 511.7 242.6 1.87 453.6 +small
SCFT 100.9 5 504.3 225.2 2.05 461.5 +small

Table 7.10: Graphs’ volume, difficulty and effort when using replication.

7.3 Graph Annotations

In the previous sections we presented the results of evaluating the complexity

of graphs resulting from using the big-bang or the derivational approach when

building programs. The metrics used only take the graph into account. There is,

however, additional information contained in some graphs (a.k.a. annotations),

which is used to express the knowledge needed to derive the programs. We are

referring to the templates instantiation specification, the replication info, and the

annotations used to specify extensions. Although this info is not represented by

a graph, and therefore cannot be measured by MM, when using the HM we can

take the additional info into account. To do so, we simply count the operators

and operands present in the annotations, as usual for the HM when applied to

source code.

We caution readers that the following results put together numbers

for concepts at different levels of abstraction, which probably should

have a different “weight” in the metrics. However, we are not able

to justify a complete separation and simply present the results with

this warning.

7.3.1 Gamma’s Hash Joins

In Table 7.10 we showed results for Gamma case studies when using replication.

Replication reduces the complexity of the graphs. However, annotations on boxes

and ports are needed to express how they are replicated. Table 7.11 adds the

impact of these annotations to the values previously shown.
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Big Bang Derivation Difference
V D E V D E E

HJoin (long) 81.7 5.25 429.1 282.3 2.96 835.5 –significant
HJoin + Casc. HJoin (long) 232.7 5.55 1291.3 355.8 2.57 915.3 +noticeable

Table 7.11: Gamma graphs’ volume, difficulty and effort (including annotations)
when using replication.

We previously mentioned that the use of replication results in higher reduc-

tions of complexity for the big-bang approach than for the derivational approach,

making the ratios more favorable to the big-bang approach. However, when we

add the impact of the replication annotations, we notice that (i) replication

increases difficulty and effort (when compared to the results from Table 7.6),5

and (ii) the positive impact on ratios for the big-bang approach becomes lower.

For example, whereas in Table 7.10 the difference between the big-bang and

derivational approaches for HJoin + Casc. HJoin (long) was small, the same

difference is now noticeable.

7.3.2 Dense Linear Algebra

In DLA domain we make use of templates to reduce the number of rewrite rules

we need to specify. Table 7.12 adds the impact of the annotations needed to

specify the valid templates instantiations to the values previously presented in

Table 7.7.6

Big Bang Derivation Difference
V D E V D E E

LU (dm) 118.9 5.7 677.7 280.4 2.11 591.0 +small
Chol + LU 381.3 4.62 1761.7 592.0 1.90 1123.2 +significant

Table 7.12: DLA graphs’ volume, difficulty and effort (including annotations).

5It is worth mentioning, however, that the models using replication are more expressive
than the models that do not use replication. In models using replication an element (box,
port, connector) may be replicated any number of times, whereas in the models considered for
Table 7.6 boxes are replicated a predefined number of times.

6Templates are only useful in the distributed memory version of LU factorization and
when we put all implementations together, even though in Section 4.2 we have used templatized
rewrite rules in other derivations. In this study, in the cases templates did not provide benefits,
they were not used. Therefore only two rows of the table are shown.
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In this case the annotations affect the derivational approach only. Still, the

impact is minimal and the differences between both approaches are not affected

significantly, which means the derivational approach has better results, although

the differences are slightly lower.

7.3.3 UpRight

In the different UpRight scenarios considered before, we used annotations for

replication, templates, and extensions. Table 7.13 adds the impact of these

annotations to the values previously presented in Tables 7.8, 7.9, and 7.10.

Big Bang Derivation Difference
V D E V D E E

SCFT 229.1 5 1145.6 537.9 1.73 932.5 +small
UpRight All 1272.5 5.99 7616.0 1329.5 2.06 2743.8 +significant
UpRight (ext.) 1272.5 5.99 7616.0 961.6 2.43 2333.7 +significant
SCFT (replication) 154.8 11.37 1759.7 565.0 3.02 1703.7 +small

Table 7.13: SCFT graphs’ volume, difficulty and effort.

In rows SCFT and UpRight All we are taking into account the impact of the

template annotations on the numbers presented in Table 7.8. The numbers for

the derivational approaches become higher, i.e., the benefits of the derivational

approach are now smaller. Still, in both cases the derivational approach has

lower effort, and when considering all program, the difference is significant.

Row UpRight (ext.) adds the impact of template and extension annotations

to the numbers presented in Table 7.9. There is an increase in volume, difficulty

and effort. However, the big-bang approach still requires significantly more

effort than the derivational approach.

Finally, row SCFT (replication) adds the impact of template and replication

annotations to the numbers presented in Table 7.10. On one hand, we have

template annotations that penalize the derivational approach. On the other

hand, we have replication annotations that penalize more the big-bang approach.

Thus, the derivational approach is still better than the big-bang approach, and

the difference remains small.
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7.4 Discussion

We believe that our proposed metrics provide reasonable measures for the com-

plexity/effort associated with the use of each approach. The HM captures more

information about the graphs, which make us believe it is more accurate. More-

over, HM provides values for different aspects of the graphs, whereas MM only

provides an estimate for complexity (that we consider similar to the effort in

HM). However, we notice that both metrics provided comparable results, which

are typically explained in similar ways.7

The numbers provide insights about which approach is better. Even though

it is difficult to define a criteria to determine what differences are significant,

the numbers in general show a common trend: as more programs are considered

(for a certain domain) the complexity/effort of the derivational approach has

lower increase than the complexity of the big-bang approach, and eventually

the derivational approach becomes better. This is consistent with the benefits

we can expect from modularizing a program’s source code, where we are likely

to increase the amount of code needed if there are no opportunities for reuse.

However, when we have to implement several programs in the same domain,

we can expect to be able to reuse the modules created. Even when this is not

case, modularized program may require more code, but we expect to benefit

from modularizing a program by dividing the problem in smaller parts, easier to

understand and maintain than the whole [Par72].

Besides the trend observed when the number of programs in a domain in-

creases, we also note that the type of transformations used in each domain in-

fluences the benefits of using a derivational approach. For example, in domains

such as databases or DLA we have refinements/optimizations that remove boxes,

which reduce the complexity of the resulting architecture, favouring the big-bang

approach. On the other hand, almost all optimizations used in UpRight (rota-

tions) increase the complexity of the resulting architecture, therefore we are likely

7The Pearson correlation coefficient for the complexity/effort of the 39 distinct pairs is
0.9579 (p < 0.00001), which denotes a strong positive linear correlation between complexity
(MM) and effort (HM).
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to obtain results more favorable to the derivational approach earlier (i.e., with

less programs being derived) in this domain.

In the more complex scenario we have (UpRight without extensions), the

complexity of the big bang approach is 1.7 times greater than the complexity

of the derivational approach, and the effort for the big-bang approach is 2.8

times greater than for the derivational approach (when we consider annotations),

which we believe it is a significant difference to justify the use of the derivational

approach.

Not all knowledge of a graph or rewrite rules is captured in the graph structure

and size. Therefore, for the HM we also presented numbers that take into account

different types of graph annotations supported by ReFlO. These results still show

benefits for the derivational approach.

Metrics and controlled experiments: perspective. Before we started

looking for metrics to compare the big-bang with the derivational approach,

controlled experiments have been conducted to answer questions such as which

approach is better to understand a program?, or which approach is better to mod-

ify a program?. The Gamma’s Hash Joins (long derivation) and SCFT programs

were used in these studies. Our work on the derivational approach was origi-

nally motivated by the difficulties in understanding a program developed using

the big-bang approach. The use of the derivational approach allowed us to tackle

these difficulties, and understand the program design. Thus, we assumed from

the beginning that the use of a derivational approach would be beneficial. How-

ever, the experimental results did not support this hypothesis, as no significant

difference was noted regarding ability to understand or modify the programs us-

ing the different approaches, which surprised us. The results obtained with these

metrics help us to understand those results. Considering the result of Table 7.11

(row HJoin (long)) and Table 7.13 (row SCFT (replication)), where we have

numbers for the forms of the case studies used closer to the ones used in the con-

trolled experiments, we can see that, for Gamma’s Hash Joins, the derivational

approach requires more effort (according to HM) than the big bang approach,
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and for SCFT both approaches require similar amounts of effort. This is con-

sistent with the results obtained in the first controlled experiments [FBR12].

On the other hand, the derivational approach has lower difficulty. That is, the

lower difficulty should make it easier for users to understand the program when

using the derivational approach, which is likely to make users to prefer this

kind of approach. This match the results obtained for the second series of con-

trolled experiments [BGMS13]. Considering the additional volume required by

the derivational approach, it is expected that the derivational approach does not

provide better results in the case studies considered (particularly in terms of

time spent when using a particular approach).



Chapter 8

Related Work

8.1 Models and Model Transformations

The methodology we propose, as previously mentioned, is built upon ideas pro-

moted by KBSE. Unfortunately, the reliance on sophisticated tools and specifica-

tion languages compromised its success [Bax93], and few examples of successful

KBSE systems exist. Amphion [LPPU94] is one of them. It uses a DSL to write

abstract specifications (theorems) of problems to solve, and term rewriting to

convert the abstract specification in a program. The Amphion knowledge base

captures relations between abstract concepts and their concrete implementation

in component libraries, allowing it to find a way of composing library compo-

nents that is equivalent to the specification. Their focus was on the conversion

between different abstraction levels (i.e., given a specification Amphion would

try to synthesize an implementation for it), not the optimization of architectures

to achieve properties such as efficiency or availability.

Rule-based query optimization (RBQO) structured and reduced the complex-

ity of query optimizers by using query rewrite rules, and it was essential in the

building of extensible database systems [Fre87, GD87, HFLP89]. Given a query,

a query optimizer has to find a good query evaluation plan (QEP) that pro-

vides an efficient strategy to obtain the results from the database system. In

RBQO the possible optimizations are described by transformation rules, provid-

191
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ing a high-level implementation independent, notation for this knowledge. In

this way, the rules are separated from the optimization algorithms, increasing

modularity and allowing incremental development of query optimizers, as new

rules can be added, either to support more sophisticated optimizations or opti-

mization for new features of the database, without changing the algorithms that

apply the rules. The transformation rules specify equivalence between queries,

i.e., they say that a query which matches a pattern (and possibly some additional

conditions), may be replaced by other query.1

Rules also specify the valid implementations for query operators. Based on

the knowledge stored in these rules, a rewrite engine produces many equivalent

QEPs. Different approaches can be used to choose the rules to apply at each

moment, and to reduce the number of generated QEPs, such as priorities at-

tributed by the user [HFLP89], or the gains obtained in previous applications

of the rules [GD87]. Later, cost functions are used to estimate the cost of each

QEP, and the most efficient is chosen. This is probably the most successful ex-

ample of the use of domain-specific knowledge, encoded as transformations, to

map high-level program specifications to efficient implementations.

It is well-known that the absence of information of the design process that

explains how an implementation is obtained from a specification complicates

software maintenance [Bax92]. This led Baxter to propose a structure for a

design maintenance system [Bax92].

We use a dataflow notation in our work. This kind of graphical notation

has been used by several other tools such as LabVIEW [Lab], Simulink [Sim],

Weaves [GR91], Fractal [BCL+06], or StreamIt [Thi08]. However, they focus on

component specification and construction of systems composing those compo-

nents. We realized that transformations (in particular optimizations) play an

essential role when building efficient architectures using components. LabVIEW

does support optimizations, but only when mapping a LabVIEW model to an

1In effect, this is basic mathematics. (Conditionally-satisfied) equals are replaced by equals.
In doing so, the semantics of the original query is never changed by each rewrite. However,
the performance of the resulting plan may be different. Finding the cheapest plan that has
the same semantics of the original query is the goal of RBQO.
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executable. Users can not define refinements and optimizations, but LabVIEW

compiler technicians can. More than using a dataflow notation for the specifica-

tion of systems, we explore it to encode domain-specific knowledge as dataflow

graph transformations.

In the approach we propose, transformations are specified declaratively, pro-

viding examples of the graph “shapes” that can be transformed (instead of defin-

ing a sequence instructions that result in the desired transformation), which has

two main benefits. First, it makes easier for domain experts (the ones with the

knowledge about the valid domain transformations) to specify the transforma-

tions [Var06, BW06, WSKK07, SWG09, SDH+12]. Other approaches have been

proposed to address this challenge. Baar and Whittle [BW06] explain how a

metamodel (e.g., for dataflow graphs) can be extended to also support the speci-

fication of transformations over models. In this way, a concrete syntax, similar to

the syntax used to define models, is used to define model transformations, making

those transformations easier to read and understand by humans. We also propose

the use of the concrete syntax to specify the transformations. Model transfor-

mation by example (MTBE) [Var06, WSKK07] proposes to (semi-)automatically

derive transformation rules based on set of key examples of mappings between

source and target models. The approach was improved with the use of Induc-

tive Logic Programming to derive the rules [VB07]. The rules may later be

manually refined. Our rules provide examples in minimal context, and unlike

in MTBE, we do not need to relate the objects of the source and target model

(ports of interfaces are implicitly related to the ports of their implementations).

Additionally, MTBE is more suited for exogenous transformations, whereas we

use endogenous transformations [EMM00, HT04]. More recently, a similar ap-

proach, model transformation by demonstration [SWG09] was proposed, where

users show how source models are edited in order to be mapped to the target

models. A tool [SGW11] captures the user actions and derives the transfor-

mations conditions and the operations needed to perform the transformations.

However, in our approach it is enough to provide the original element and its

possible replacements.
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The other benefit of our approach to specify transformations is that it makes

domain knowledge (that we encode as transformations) more accessible to non-

experts, as this knowledge is encoded in a graphical and abstract way, relating

alternative ways of implementing a particular behavior. Capturing algebraic

identities is on the base of algebraic specifications and term rewriting systems.

RBQO [Loh88, SAC+79] is also a successful example of the application of these

ideas, where, as in our case, the goal is to optimize programs. Program verifica-

tion tools, such as CafeOBJ [DFI99] or Maude [CDE+02], are another common

application. As our transformations are often bidirectional, our system is in fact

closer to a Thue system [Boo82] than an abstract rewriting system [BN98].

Graph grammars [Roz97] are a well-known method to specify graph transfor-

mations. They also provide a declarative way to define model/graph transfor-

mations using examples. In particular, our rules are specified in a similar way

to productions in the double-pushout approach for hypergraphs [Hab92]. Our

transformations are better captured by hypergraph rewrite rules, due to the role

of ports in the transformations (that specify the gluing points in the transfor-

mation). Despite the similarities, we did not find useful results in the theory of

graphs grammars to apply in our work. In particular, we explored the use of

critical pair analysis [Tae04] to determine when patterns would not need to be

tested, thus improving the process of detecting opportunities for optimization.2

Our methodology provides a framework for model simulation/animation,

which allows developers to predict properties of the system being modeled with-

out having to actually build it. LabVIEW and Simulink are typical examples of

tools to simulate dataflow program architectures. Ptolemy II [EJL+03] provides

modeling and animation support for heterogeneous models. Other tools exist

for different types of models, such as UML [CCG+08, DK07], or Colored Petri

Nets [RWL+03].

Our work has similarities with model-driven performance engineering

2The results obtained were not useful in practice, as (i) there were too many overlaps in
the rules we use, meaning that pattern would have to be tested almost always, and (ii) even
with smaller models the computation of critical pairs (using the Agg tool) would take hours,
and often fail due to lack of hardware resources.
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(MDPE) [FJ08]. However, we focus on endogenous transformations, and how

those transformations improve architecture’s quality attributes, not exogenous

transformations, as it is common in MDPE. Our solution for cost estimation can

be compared with the coupled model transformations proposed by Becker [Bec08].

However, the cost estimates (as well as other interpretations) are transformed

in parallel with the program architecture graphs, not during M2T transforma-

tions. Other solutions have been proposed for component based systems [Koz10].

KLAPER [GMS05] provides a language to automate the creation of performance

models from component models. Kounev [Kou06] shows how queueing Petri nets

can be used to model systems, allowing prediction of its performance character-

istics. The Palladio component model [BKR09] provides a powerful metamodel

to support performance prediction, adapted to the different developer roles. We

do not provide a specific framework for cost/performance estimates. Instead, we

provide a framework to associate properties with models, which can be used to

attain different goals.

Properties are similar to attributes in an attributed graph [Bun82] which

are used to specify pre- and postconditions. Allowing implementations to have

stronger preconditions than their interfaces, we may say that the rewrite rules

may have applicability predicates [Bun82] or attribute conditions [Tae04], which

specify a predicate over the attributes of a graph when a match/morphism is

not enough to specify whether a transformation can be applied. Pre- and post-

conditions were used in other component systems, such as Inscape [Per87], with

the goal of validating component compositions. In our case, the main purpose

of pre- and postconditions is to decide when transformations can be applied.

Nevertheless, they may also be used to validate component compositions.

Abstract interpretations [CC77, NNH99] define properties about a program’s

state and specify how instructions affect those properties. The properties are cor-

rect, but often imprecise. Still, they provide useful information for compilers to

perform certain transformations. In our approach, postconditions play a similar

role. They compute properties about operation outputs based on properties of

their inputs, and the properties may be used to decide whether a transformation
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can be applied or not. As for abstract interpretations, the properties computed

by postconditions have to describe output values correctly. In contrast, proper-

ties used to compute costs, for example, are often just estimates, and therefore

may not be correct, but in this case approximations are usually enough. The

Broadway compiler [GL05] used the same idea of propagating properties about

values, to allow the compiler to transform the program. Broadway separated

the compiler infrastructure from domain expertise, and like in our approach,

the goal was to allow users to specify domain-specific optimizations. However,

Broadway had limitations handling optimizations that replace complex compo-

sitions of operations. Specifying pre- and postconditions as properties that are

propagated is also not new. This was the approach used in the Inscape environ-

ment [Per89a, Per89b], and later by Batory and Geraci [BG97], and Feiler and

Li [FL98]. Interpretations provide alternative views of a dataflow graph that are

synchronized as it is incrementally changed [RVV09].

8.2 Software Product Lines

We use extensions to support optional features in dataflow graphs, effectively

modeling an SPL of dataflow graphs. There are several techniques in which

features of SPLs can be implemented. Some are compositional, including

AHEAD [Bat04], FeatureHouse [AKL09], and AOP [KLM+97], all of which work

mainly at code level. Other solutions have been proposed to handle SPLs of

higher-level models [MS03, Pre04].

We use an annotative approach, where a single set of artifacts, containing

all features/variants superimposed, is used. Artifacts (e.g., code, model ele-

ments) are annotated with feature predicates to determine when these artifacts

are visible in a particular combination of features. Preprocessors are a prim-

itive example [LAL+10] of a similar technique. Code with preprocessor direc-

tives can be made more understandable by tools that color code [FPK+11] or

that extract views from it [SGC07]. More sophisticated solutions exist, such as

XVCL [JBZZ03], Spoon [Paw06], Spotlight [CPR07], or CIDE [KAK08]. How-
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ever, our solution works at a model level, not code.

Other annotative approaches also work at the model level. In [ZHJ04] an

UML profile is proposed to specify model variability in UML class diagrams

and sequence diagrams. Czarnecki and Antkiewicz [CA05] proposed a template

approach, where model elements are annotated with presence conditions (similar

to our feature predicates) and meta-expressions. FeatureMapper [HKW08] allows

the association of model elements (e.g., classes and associations in a UML class

diagram) to features. Instead of annotating final program architectures directly

(usually too complex), we annotate model transformations (simpler) that are

used to derive program implementations. This reduces the complexity of the

annotated models, and it also makes the extensions available when deriving

other implementations, making extensions more reusable.

We provide an approach to extract an SPL from legacy programs. RE-

PLACE [BGW+99] is an alternative to reengineer existing systems into SPLs.

FeatureCommander [FPK+11] aids users visualizing and understanding the dif-

ferent features encoded in preprocessor-based software. Other approaches have

been proposed with similar intent, employing refactoring techniques [KMPY05,

LBL06, TBD06].

Extracting variants from an XRDM is similar to program slicing [Wei81].

Slicing has been generalized to be used with models [KMS05, BLC08], in order

to reduce its complexity and make easier for developers to analyse models. These

approaches are focused on the understandability of the artifacts, whereas in our

work the focus is on rule variability. Nevertheless, ReFlO projections remove

elements from rewrite rules that are not needed for a certain combination of

features, which we believe also contribute to improve rewrite rules understand-

ability. In [Was04] Wasowski proposes a slice-based solution where SPLs are

specified using restrictions that remove features from a model, so that a variant

can be obtained.

ReFlO supports analyses to verify whether all variants of an XRDM that

can be produced meet the metamodel constrains. The analysis method used is

based on solutions previously proposed by Czarnecki and Pietroszek [CP06] and
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Thaker et al. [TBKC07].

8.3 Program Optimization

Peephole optimization [McK65] is an optimization technique that looks at a se-

quence of low-level instructions (this sequence is called the peephole, and its size is

usually small), and tries to find an alternative set of instructions, which produces

the same result, but that is more efficient. There are several optimizations this

technique enables. For example, it can be use to compute expressions involving

only constants in compile time, or to remove unnecessary operations, which some-

times result from the composition of high-level operations. Compilers also use

loop transformations in order to get more efficient code, namely improving data

locality or exposing parallelism [PW86, WL91, WFW+94, AAL95, BDE+96].

Data layout transformations [AAL95, CL95] is another strategy that can be

used to improve locality and parallelism. The success of these kind of techniques

is limited for two reasons: the compiler only has access to the code, where most

of the information about the algorithm was lost, and sometimes the algorithm

used in the sequential code is not the best option for a parallel version of the

program.

When using compilers or when using libraries, sometimes there are parame-

ters that we can vary to improve performance. PHiPAC [BACD97] and AT-

LAS [WD98] address this question with parameterized code generators that

produce the different functions with different parameters, and time them in

order to find out which parameters should be chosen for a specific platform.

Yotov et al. [YLR+05] proposed an alternative approach, where although they

still use code generators, they try to predict the best parameters using a

model-driven approach, instead of timing the functions with different param-

eters. Several algorithms were proposed to estimate the optimal parame-

ters [DS90, CM95, KCS+99].

Spiral [PMS+04] and Build to Order BLAS [BJKS09] are examples of do-

main specific tools to support the generation of efficient low-level kernel func-
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tions, where empirical search is employed to choose the best implementation.

In this work the focus is not the automation of the synthesis process, but the

methodology used to encode the domain. Tools such as Spiral or Build to Order

BLAS are useful when we have a complete model of a domain, whereas the tools

we propose are to be used both by domain experts in the process of building those

domain models, and later by other developers to optimize their programs. Nev-

ertheless, this research work is part of a larger project that also aims to automate

the derivation of efficient implementations. Therefore, we provide the ability to

export our models to code that can be used with DxTer [MPBvdG12, MBS12]

a tool that, like Spiral and Build to Order BLAS, automates the design search

for the optimized implementation. The strategy we support to search the design

space is based on cost functions, and not on empirical search.

Program transformations have been used to implement several optimizations

in functional programming languages, such as function call inline, conditionals

optimizations, reordering of instructions, function specialization, or removal of

intermediate data structures [JS98, Sve02, Voi02, Jon07]. Although this method

is applied at higher levels of abstraction than loop transformations or peephole

optimization, this approach offers limited support for developers to extend the

compiler with domain-specific optimizations.

In general, our main focus is on supporting higher-level domain-specific design

decisions, by providing an extensible framework to encode expert knowledge.

However, our approach is complemented by several other techniques that may be

used to optimize the lower-level code implementations we rely on when generating

code.

8.4 Parallel Programming

Several techniques have been proposed to overcome the challenges presented by

parallel programming. One of the approaches that has been used is the develop-

ment of languages with explicit support to parallelism. Co-array Fortran [NR98],

Unified Parallel C (UPC) [CYZEG04], and Titanium [YSP+98] are extensions
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to Fortran, C and Java, respectively, which provide constructors for parallel

programming. They follow the partitioned global address space (PGAS) model,

which presents to the developer a single global address space, although it is logi-

cally divided among several processors, hiding communications from developers.

Nevertheless, the developer still has to explicitly distribute the data, and assign

work to each process. Mixing the parallel constructors with the domain-specific

code, programs become difficult to maintain and evolve.

Z-level Programming Language (ZPL) [Sny99] is an array programming lan-

guage. It supports the distribution of arrays among distributed memory ma-

chines, and provides implicit parallelism on the operations over distributed ar-

rays. The operations that may require communications are, however, explicit,

which allows the developer to reason about performance easily (WYSIWYG

performance model [CLC+98]). However, this language can only explore data

parallelism and when we use array based data structures. Chapel [CCZ07] is

a new parallel programming languages, developed with the goal of improving

productivity in the development of parallel programs. It provides high-level ab-

stractions to support data-parallelism, task-parallelism, concurrency, and nested

parallelism, as well as the ability to specify how data should be distributed. It

tries to achieve a better portability avoiding assumptions about the architecture.

Chapel is more general than ZPL, as it is not limited to data parallelism in ar-

rays. However, the developer has to use language constructors to express more

complex forms of parallelism or data distributions, mixing parallel constructors

and domain-specific code, and making programs difficult to maintain and evolve.

Intel Threading Building Blocks (TBB) [Rei07] is a library and framework

that uses C++ templates to support parallelism. It provides high-level abstrac-

tions to encode common patterns of task parallelism, allowing the programmer

to abstract the platform details. OpenMP [Boa08] is a standard for shared mem-

ory parallel programming in C, C++ and Fortran. It provides a set of compiler

directives, library routines and variables to support parallel programming and

allows incremental development, as we can add parallelism to a program adding

annotations to the source code, in some cases without need to change the original



8.4. Parallel Programming 201

code. It provides high-level mechanisms to deal with scheduling, synchronization,

or data sharing. These approaches are particularly suited for some well-known

patterns of parallelism (e.g., the parallelization of a loop), but they offer limited

support for more complex patterns, which requires considerable effort from the

developer to explore them. Additionally, these technologies are limited to shared

memory parallelism.

These approaches raise the level of abstraction at which developers work,

hiding low-level details with more abstract language concepts or libraries. Nev-

ertheless, the developer still has to work at code level. Moreover, none of the

approaches allow the developer to easily change the algorithms, or provide high-

level notations to specify domain-specific optimizations.

Some frameworks take advantage of algorithmic skeletons [Col91], which

can express the structure of common patterns used in parallel program-

ming [DFH+93]. To obtain a program, this structure is parameterized by the

developer with code that implements the domain functionality. A survey on the

use of algorithmic skeletons for parallel programming is presented in [GVL10].

These methodologies/frameworks raise the level of abstraction, and remove par-

allelization concerns from domain code. However, developers have to write the

code according to rules imposed by frameworks, and using the abstractions pro-

vided by them. Skeletons may support optimization rewrite rules to improve

performance on compositions of skeletons [BCD+97, AD99, DT02]. However,

they are limited to general (predefined) rules, and do not support domain-specific

optimizations.

One of the problems of parallel programming is the lack of modularity. In

traditional approaches the domain code is usually mixed with parallelization con-

cerns, and these concerns are spread among several modules (tangling and scat-

tering in aspect-oriented terminology) [HG04]. Several works have used aspect-

oriented programming (AOP) [KLM+97] to address this problem. Some of them

tried to provide general mechanisms for parallel programming, for shared mem-

ory environments [CSM06], distributed memory environments [GS09], or grid

environments [SGNS08]. Other works focused on solutions for particular soft-
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ware applications [PRS10]. AOP can be used to map sequential code to parallel

code without forcing the developer to write its code in a particular way. However,

starting with a sequential implementation, the developer is not able to change

the algorithm used. In our approach, we leverage from the fact we start with

an abstract program specification, where we have the flexibility to choose the

algorithms to be used during the derivation process. Finally, AOP is limited

regarding the transformations that it can make to code/programs. For exam-

ple, it is difficult to use AOP to apply optimizations that break encapsulation

boundaries.
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Conclusion

The growing complexity of hardware architectures has moved the burden of

improving performance of programs from hardware manufacturers to software

developers, forcing them to create more sophisticated software solutions to make

full use of hardware capabilities.

Domain experts created (reusable) optimized libraries. We argue that those

libraries offer limited reusability. More important (and useful) than being able to

reuse operations provided by libraries, is to be able to reuse the knowledge that

was used to build those libraries, as knowledge offers additional opportunities

for reuse. Therefore, we proposed an MDE approach to shift the focus from

optimized programs/libraries to the knowledge used to build them.

In summary, the main contributions of this thesis are:

Conceptual framework to encode domain knowledge. We defined a

framework to encode and systematize domain knowledge that experts

use to build optimized libraries and program implementations. The mod-

els used to encode knowledge relate the domain operations with their

implementation, capturing the fundamental equivalences of the domain.

The encoded knowledge defines the transformations—refinements and

optimizations—that we can use to incrementally map high-level specifica-

tions to optimized program implementations. In this way, the approach

we propose contributes to make domain knowledge and optimized pro-

203
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grams/libraries more understandable to non-experts. The transformations

can be mechanically applied by tools, thus enabling non-experts to reuse

expert knowledge. Our framework also uses extension transformations,

where we can incrementally produce derivations with more and more

features (functionality), until a derivation with all desired features is

obtained. Moreover, extensions provide a practical mechanism to encode

product lines of domain models, and to reduce the amount of work required

to specify knowledge in certain application domains.

Interpretations framework. We designed an interpretations mechanism to

associate different kinds of behavior to models, allowing users to ani-

mate them and predict properties about the programs they are designing.

Among the applications of interpretations is the estimation of different

performance costs, as well as code generation.

ReFlO tool. We developed ReFlO to validate our approach and show that we

can mechanize the development process with the knowledge we encoded.

The development of ReFlO was essential to understand the limitations of

preliminary versions of the proposed approach, and improve it, in order to

support the different case studies defined.

Our work is built upon simple ideas (refinement, optimization, and extension

transformations). Nevertheless, more sophisticated details are required to apply

it in a broad range of case studies (e.g., pre- and postconditions, supported by

alternative representations), to make the approach more expressive in represent-

ing knowledge (e.g., replication), or to reduce the amount of work required to

encode knowledge (e.g., templates). Besides optimizations, we realized that the

ability to use nonrobust algorithms is also essential to allow the derivation of

efficient program implementations in certain application domains.

We rely on a DSML to specify transformations and program architectures.

We believe that providing a graphical notation and tools (along with the declar-

ative nature of rewrite rules) is important to the success of the approach. How-

ever, the use of graphical modeling notations also has limitations. For example,
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tools to work with graphical model representations are typically significantly less

mature and stable than tools to work with textual representations.

We use a dataflow notation but we do not impose a particular model of com-

putation or strategy to explore parallelism. Different domains may use different

ways to define how programs execute when mapped to code (i.e., when is each

operation/box executed, how data is communicated, etc.), or how parallelism is

obtained (e.g., by using the implicit parallelism exposed by a dataflow graph, or

using an SPMD approach).

We showed how ReFlO could be used in different domains, where existing

programs were reverse engineered, to expose the development process as a se-

quence of incremental transformations, and contributing to make the process

systematic. Not all domains may be well suited for this approach, though (be-

cause algorithms and programs are not easily modeled using dataflow models,

or because the most relevant optimizations are decided at runtime—as it often

happens in irregular applications—, for example). The same applies to the types

of parallelism explored (low-level parallelism, such as ILP, would require to ex-

pose too many low-level details in models, erasing the advantages of models in

handling the complexity of programs). We focused on regular domains, and loop-

and procedure-level parallelism.

We provide the ability to export knowledge encoded in ReFlO to an exter-

nal tool, DxTer, which automates the search for the best implementation of a

program. However, we note that there are different ways to model equivalent

knowledge, and the best way to model it for interactive (mechanical) develop-

ment and for automated development may not be the same. For interactive

development we try to use small/simple rules, which are typically easier to un-

derstand, and better to expose domain knowledge. DxTer often requires several

simple rules to be joined together (and replaced) to form a more complex rule,

in order to reduce the size of the design space generated by those rules. As an

automated system, unlike humans, DxTer can easily deal with complex rewrite

rules, and benefit from the reduced design space obtained in this way.

We believe that our approach is an important step to make the process of
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developing optimized software more systematic, and therefore more understand-

able and reusable. The knowledge systematization contributes to bring software

development closer to a science, and it is the first step to enable the automation

of the development process.

9.1 Future Work

In order to improve the DxT approach and ReFlO tool different lines of research

can be explored in future work. We describe some below:

Loop transformations. Support for lower-level optimization techniques, such

as loops transformations, is an important improvement for this work. It

would allow us to leverage from domain-specific knowledge to overcome

compiler limitations in determining when and how loop transformations

can be applied, namely when the loop bodies involve calls to complex

operations or even to external libraries (which complicates the computation

of the information necessary to decide whether the loop transformation can

be applied) [LMvdG12]. This would require us to add support for loops

in our notation, which we believe is feasible. However, the development

of a mechanism to support loop transformations in multiple domains may

be challenging. This topic was explored for the DLA domain [LMvdG12,

Mar14], but its solution is not easily applicable to other domains.

Irregular Domains. During our research we applied our approach and tools to

different domains. We have worked mainly with regular domains, however

we believe the approach may also be useful when dealing with irregular

application domains. (In fact, we recently started working with an ir-

regular domain—phylogenetic reconstruction [YR12]—that showed promis-

ing results, although it also required more sophisticated dataflow graphs

and components to deal with the highly dynamic nature of the operations

used [NG15].)



9.1. Future Work 207

Additional hardware platforms. In the case studies analysed we deal with

general purpose shared and distributed memory systems. However, GPUs

(and other types of hardware accelerators) are also an important target

hardware platform that is worth exploring. Basic support for GPUs may

be obtained choosing primitive implementations optimized for GPUs, but

DxT/ReFlO may also be useful to optimize compositions of operations,

avoiding (expensive) memory copies (in the same way we optimize compo-

sitions of redistributions in DLA to avoid communications).

Connection with algorithmic skeletons. Algorithmic skeletons have been

used to define well-known parallel patterns, some of them capturing the

structure of parallel implementations we used when encoding domains

with DxT/ReFlO. We believe it is worth exploring the complementarity

of DxT/ReFlO and algorithmic skeletons, namely to determine whether it

can be used as a skeletons framework (such framework should overcome

a typical limitation of skeletons frameworks regarding the specification of

domain-specific optimizations).

DSL for interpretations. Probably the most important topic to explore is a

DSL for interpretations (currently specified using Java code), in order to

raise the level of abstraction at which they are specified, and to make eas-

ier to export the knowledge they encode to other formats and tools. In

particular, this would allow to export (certain) interpretations to DxTer,

improving the integration between this tool and ReFlO. Moreover, specific

features targeting common uses for interpretations (e.g., pre- and post-

conditions, cost estimates, code generation) could be considered. In order

to determine the expressiveness and features required by such a DSL, we

believe, however, it would be necessary to explore additional domains.

Workflow specification language. Workflow systems are becoming more and

more popular to model scientific workflows [DGST09]. Even though it was

not developed as a workflow system, ReFlO provides some useful features

for this purpose, namely its graphical capabilities, its flexible model of
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computation, its interpretations framework, and the ability to encode pos-

sible refinements and optimizations for abstract workflows, which would

allow scientists to customize the workflow for their use cases. Therefore,

we believe it would be worth exploring the use of ReFlO as a workflow

system.

ReFlO usability and performance improvements. When dealing with

graphical models, usability is often a problem. Unfortunately, and de-

spite significant improvements in the recent past, libraries and frameworks

to support the development of graphical modeling tools have limitations,

which compromises their adoption. In particular, ReFlO would greatly

benefit from a better automatic graph layout engine, specialized for the

notation we use. Several other improvements can be applied to enhance

ReFlO usability, namely providing features that users typically have when

using code (e.g., better copy/paste, reliable undo/redo, search/replace).

The use of lower-level frameworks would be necessary to provide these im-

provements. This would also allow the optimization of the transformation

engine provided by ReFlO, in case performance becomes a concern.

Empirical studies. Empirical studies have been conducted to validate the DxT

approach [FBR12, BGMS13]. Still, additional studies would be useful to

better evaluate DxT/ReFlO, and determine how they can be further im-

proved.
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tion of a model easier to understand than the model itself. In

ICPC ’12: 20th International Conference on Program Compre-

hension, pages 47–52, 2012.

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implemen-

tation of fftw3. Proceedings of the IEEE, 93(2):216–231, 2005.

[FJ08] Mathias Fritzsche and Jendrik Johannes. Putting performance

engineering into model-driven engineering: Model-driven perfor-

mance engineering. In Models in Software Engineering, pages 164–

175. Springer-Verlag, 2008.

[FL98] Peter Feiler and Jun Li. Consistency in dynamic reconfiguration.

In ICCDS ’98: Proceedings of the 4th International Conference on

Configurable Distributed Systems, pages 189–196, 1998.

[FLA] FLAMEWiki. http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage.

http://www.eclipse.org/epsilon/


Bibliography 221

[Fly72] Michael J. Flynn. Some computer organizations and their effec-

tiveness. IEEE Transactions on Computers, 21(9):948–960, 1972.

[For94] Message Passing Interface Forum. MPI: A message-passing in-

terface standard. Technical report, University of Tennessee,

Knoxville, TN, USA, 1994.

[FPK+11] Janet Feigenspan, Maria Papendieck, Christian Kästner, Math-
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