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Abstract—Dataflow programs (DfPs) are widely used in com-
puting. They are complex graphs where nodes are computations
and edges indicate the flow of data. We reverse engineered a
legacy DfP by deriving its graph from an elementary graph using
domain-specific transformations. (In MDE-speak, our derivations
are PIM to PSM mappings). In this paper, we explain how
our tool ReFlO (a) implements transformations, (b) expresses
a PIM to PSM mapping as a sequence of transformations, (c)
encodes product lines RDMs using extensions, and (d) generalizes
derivations of a DfP to a derivation of feature-extended DfP.

I. INTRODUCTION

Dataflow programs (DfPs) abound in today’s world. They
are crash-fault tolerant file servers [1], [2], parallel relational
query processors [3], [2], dense linear algebra kernels [4],
[2], virtual instruments [5], [6], [7], and programs of stream
processing languages [8]. A Df P is a directed graph; nodes
are components or computations. Edges that flow into a node
are node inputs; edges leaving a node are node outputs.

We confronted a common reverse engineering problem:
given a legacy Df P, how can we explain both its dataflow
graph and functionality? We found that a derivational approach
to Df P development offers a realistic solution. We start with
a simple Df P that is an abstract specification of a dataflow
application or Platform Independent Model (PIM) [9]. We
then apply a series of graph transformations (a.k.a. refine-
ments and optimizations) to incrementally derive its concrete
Df P or Platform Specific Model (PSM) which is executable.
Each transformation encodes expert-known and expert-proven
identities of that domain [10]. Thus, our approach to Df P
development is correct-by-construction.
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Fig. 1: Derivation
paths.

A feature is an increment in pro-
gram functionality [11]. A software
product line (SPL) is a family of
related programs, where each family
member is identified with a unique
set of features [12]. Classical pro-
gram development starts with a sim-
ple specification (A1) that is pro-
gressively extended with desired fea-
tures/functionality to produce more
complex—but still abstract—designs (A1 → A2 → A3 → A4
or more compactly A1 7→ A4). Then, the elaborated spec is
incrementally mapped to an implementation (A4 7→ D4) using
transformations as indicated by the bold arrows of Figure 1.

When a derivational approach to Df P construction is cou-
pled with product lines, a commuting diagram is formed
(Figure 1) [13]. The nodes of this diagram represent the Df P
at different stages or levels of abstraction. The further right in
the diagram, the more features the program has. The further
down, the more implementation details have been exposed.
The upper-left corner (A1) is the most abstract design of the
Df P; the lower-right (D4) is the most concrete and detailed
design. We obtain these designs and rewrite rules through a
careful reverse engineering of the application and its domain.

We showed in [13] that classical program development is
impractical for reverse engineering legacy Df P applications.
The fully-featured specification (A4) is extraordinarily com-
plex, making it almost impossible to extract the transfor-
mations needed to map it to its implementation (A4 7→ D4).
We proposed a solution based on the commuting diagram
of Figure 1. Given a mapping of a simple spec to its im-
plementation (A1 7→ D1), we explained how each design and
transformation in A1 7→ D1 is extended by the first feature
to (A2 7→ D2), and then the next feature to (A3 7→ D3), and
so on until the fully-featured mapping (A4 7→ D4) is derived.
Doing so, the complex transformations that are needed to map
the fully-featured spec to its implementation are constructed
incrementally, simplifying the task of reverse engineering
Df Ps.

In this paper, we explain how the above task is supported
by tools. ReFlO is a framework for encoding domain knowl-
edge as transformations (refinements and optimizations) and
deriving the PSM of a Df P from a PIM using those trans-
formations [14], [15]. Moreover, we explain how the encoded
knowledge used in the derivations of DfPs and extended DfPs
is used to extract a product line of PSMs. The contributions
of our paper is the ReFlO tool and how it:

• expresses domain-specific design knowledge as rewrite
rules. The collection of all such rules is a ReFlO domain
model (RDM),

• illustrates PIM 7→PSM mappings using rules of an RDM,
• supports the process of incrementally reverse engineering

Df Ps by enhancing and annotating an RDM,
• encodes a product line of RDMs using extensions, and
• generalizes a PIM7→PSM mapping using one RDM to a

PIM 7→PSM mapping of a feature-extended RDM.

We illustrate all of these ideas by a non-trivial case study,



which serves as our evaluation of ReFlO.

II. BASIC CONCEPTS

We use a standard pipe-and-filter notation to draw Df Ps
[16]. Nodes or boxes are components with input and output
ports. Input ports are drawn as nubs on the left-side of boxes;
output ports are nubs on the right. A connector links an input
port to an output port. Figure 2 shows a Df P drawn by our
ReFlO tool [15] that models a program, called Server, that
projects (eliminates) attributes of the tuples of its input stream
and then sorts them, before sending them to a webserver. The
webserver outputs results to clients (which are exterior to the
Server interface/abstraction).

Fig. 2: The Server Df P.

Figure 2 is a PIM as it makes no reference to—or demands
on—its concrete implementation. It is a high-level specifi-
cation that can be mapped to a particular platform or for
particular inputs. We call boxes PROJECT, SORT, and WSERVER
interfaces as they specify only abstract behavior (their inputs
and outputs, and, informally, their semantics).

We use transformations to map interfaces to primitive boxes,
that represent concrete code implementations, or to algorithms,
that express how an interface can be implemented as a Df P that
references other interfaces. Figure 3 is an algorithm. It shows
a Df P called parallel sort of a map-reduce implementation
of the SORT box in Figure 2. That is, the input stream is
split into 2 (or more generally any number of) substreams,
the substreams are sorted and then merged in sorted order.

Fig. 3: parallel sort implements SORT by map-reduce.

A. Refinements

A refinement [17] is the replacement of an interface with
one of its implementations (primitive or algorithm). Refining
Figure 2 by replacing SORT with parallel sort and PROJECT
with a map-reduce algorithm, we obtain the Df P of Figure 4.

Fig. 4: Parallel version of Server.

B. Optimizations
Refinements alone are insufficient to derive efficient Df Ps.

In Figure 4 we have a MERGE followed by a SPLIT, i.e. two
streams are merged and the resulting stream is immediately
split again. Let interface IMERGESPLIT be the box that receives
two input streams, and produces two other streams containing
their input tuples (see Figure 5). ms mergesplit is one of its
implementations. However, the ms identity algorithm is a
more efficient alternative that requires no computations at all.
The reason is that SPLIT is the (right) inverse of MERGE.

Fig. 5: Alternative implementations for IMERGESPLIT.

Figure 5 tells us how Figure 4 can be optimized. We abstract
the ms mergesplit composition as the IMERGESPLIT inter-
face, obtaining Figure 6a. Then, we refine IMERGESPLIT with
its ms identity algorithm, to obtain the optimized Server
(Figure 6b). An optimization is the action of abstracting an
(inefficient) composition of boxes to an interface and then
refining that interface to an alternative implementation.

(a)

(b)

Fig. 6: Server optimization.

C. Domain Models
All of our graph rewrite rules pair an interface with an

implementation. The optimization of Figure 5 is encoded
as two rules defined by dashed arrows: IMERGESPLIT →
ms identity and IMERGESPLIT→ ms mergesplit. We call
the set of all such rules a ReFlO Domain Model (RDM).

Note: There are preconditions for replacing an in-
terface with an implementation; there are also pre-
conditions for replacing an implementation with its
interface [14]. We elide these details in our discus-
sions, but indeed such preconditions are present.

In general, there can be many PIMs in a domain. An RDM
is the set of rules that can be used to map PIMs of a domain
to their PSMs. In the following sections, we illustrate two
PIM7→PSM mappings using two different, but related PIMs.
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Fig. 7: SCFT PIM7→PSM derivation.

III. ILLUSTRATIONS

Upright is the most sophisticated Byzantine Crash-Fault
Tolerant (BCFT) server that has been built to date [1]. We
describe Upright as a sequence of progressively more complex
server designs SCFT to ACFT to AACFT . . . BCFT, ultimately
terminating with its BCFT design.

In this section, we present two different derivations of
Upright: one defining its Synchronous Crash-Fault Tolerant
(SCFT) design and the second its Asynchronous Crash-Fault
Tolerant (ACFT) design.

A. Example 1: An SCFT Derivation

The simplest design of Upright encodes a stateful SCFT
server that processes requests from multiple clients. Fig-
ure 7 shows a digitally-enlargeable derivation of Upright’s
PIM 7→PSM SCFT mapping. (Note: Upright is highly so-
phisticated, as indicated by its graphs. Such graphs must be
magnified beyond a standard page size to be appreciated).
One of us (Riché) was on an Upright implementation team,
and validated our derivation by implementing it, to reproduce
Upright’s SCFT server.

The PIM is formed by two clients (the C boxes), a serializer
(Serial) that serializes the requests from the different clients,

a server (VS), and a demultiplexer (Demult) that redirects
responses to the appropriate client. (Note: for simplicity we
draw only two clients; there can be any number of clients).

The goal is to map the SCFT PIM to a PSM that has no
single points of failure (SPoF), i.e. a box that if it stopped
processing messages would make the entire server abstraction
to stop/fail. The boxes Serial, VS, and Demult in Figure 7a
are SPoFs.

For exposition reasons, we do not explain the semantics of
these rewrites or their justification—interested readers should
consult [13]. We deliberately limit our discussions to syntactic
rewrites (a) not to overwhelm readers with domain-specific
semantics that few people on earth understand, and (b) to
demonstrate the key contributions of this paper, namely how
to derive Df Ps from domain-specific rewrite rules and how to
encode product lines of Df Ps in a general way.

Briefly, the derivation starts with the transition from Fig-
ure 7a to Figure 7b, that refines VS, exposing a network
queue (L) in front of the server (S). Next, the transition
from Figure 7b to Figure 7c map-reduces both L and S [18].
Figure 7d is a copy of Figure 7c, and shows the subgraphs
of the Df P that are to be optimized to eliminate SPoFs. The
optimizations are performed in the transition from Figure 7d



to Figure 7e, which has no SPoFs. The Df P of Figure 7e is
Upright’s SCFT PSM for the PIM of Figure 7a.

B. Example 2: An ACFT Derivation

Upright’s SCFT design tolerates a modicum of (permanent)
box failures, eventually resulting in the failure of the entire
system. Resilience to failures can be improved by adding re-
covery capabilities—the ability of a box to recover, much like
a database system recovers after a crash—so that the system
can recover from occasional network asynchrony. We now
review the PIM7→PSM derivation of Upright’s Asynchronous
Crash-Fault Tolerant (ACFT) server [1], an enhanced variant
of Upright’s SCFT server PIM [13]. The goal is again to map
its PIM to a PSM that has no SPoFs.

The PIM of Upright’s ACFT is shown in the digitally-
enlargable Figure 8a. Box R.VS denotes a recoverable server.
Briefly the PIM 7→PSM mapping is as follows: The first tran-
sition (Figure 8a to Figure 8b) exposes a recoverable network
queue (R.L) in front of a recoverable server (R.S). A feedback
loop connects R.S to R.L to provide recovery capabilities. The
transition from Figure 8b to Figure 8c performs a map-reduce
of both R.L and R.S (the refinements used are similar to the
ones from Section III-A, but here additional boxes, ports, and
connectors are needed to handle recovery data).

We again reach a point in the system’s design where
optimizations are needed to remove SPoFs. Replaying the op-
timizations already shown in Section III-A removes the SPoF
enclosed in the red boxes in Figure 8d. These optimizations
are not enough. To complete the ACFT PSM, we need to
apply additional optimizations to the blue box. Doing so, the
remaining SPoFs are eliminated, completing the mapping of
Figure 8d to Figure 8e. The Df P of Figure 8e is a PSM for
the PIM of Figure 8a.

C. Recap

We have just shown two different PIM7→PSM mappings:
one for Upright’s SCFT and another for Upright’s ACFT. Both
have a lot in common: their derivations are similar but not
identical; their rewrites are similar but not identical. The same
holds for more complete designs of Upright (see Section V-A).

With these examples under our belt, our next task to explain
how ReFlO expresses relationships among these different but
related designs and derivations, and how it avoids duplication
when specifying the transformations used in a derivation.

IV. PRODUCT LINE CONCEPTS

A feature is an increment in program functionality; it
extends a design that does not have a given functionality to
a design that does. Features and extensions are well-known.
In Z [19], simple specifications are progressively extended
to more complex specifications. Here we follow a similar
approach: we want to show how the SCFT PIM is extended to
the ACFT PIM, and in addition show how all of the rewrite
rules used in the SCFT PIM 7→PSM derivation are extended to
their counterparts in the ACFT PIM7→PSM derivation. To do
so, we first define an extension to a Df P.

An extension of a Df P adds new ports and functionality to
existing boxes and adds new boxes and connectors. Whereas
refinements and optimizations preserve the semantics of boxes,
extensions enhance semantics (e.g. adding new ports to exist-
ing boxes). Extensions allow developers to add new features
to boxes by making explicit the relation between the extended
and the base box. Features—increments in functionality—are
fundamental to software product lines (SPLs). We will return
to SPLs shortly.

To illustrate, suppose we want our Server from Section II
to have an additional feature Key that allows it to change the
sort key attribute at run-time. Figure 9 shows K.Server, the
Key-extended PIM of Server, where an extended webserver
(K.WSERVER) may now change the attribute that is used to sort
the stream by the (extended) sort operation (K.SORT). Interface
WSERVER is extended with a new output port and has now
the ability to ask for stream sorting according to a specific
attribute. Interface SORT is extended with a new input port
and has now the ability to change the attribute it uses to sort
the input stream. A new connector links the K.WSERVER back
to K.SORT to provide this extra information.

Fig. 9: The Df P K.Server.

If an interface is extended, so too must all of its imple-
mentations be extended. Figure 10 shows our design for a
Key-extension of parallel sort that adds new input ports
and connectors.

Fig. 10: Extended K.parallel sort algorithm.

By replaying the derivation using the extended transforma-
tions, we obtain the extended implementation of K.Server
(Figure 11).

Fig. 11: The optimized Df P K.Server.

Here is where product lines arise: there can be many Server
extensions. We could add feature List that enables the server
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Fig. 8: ACFT PIM 7→PSM derivation.

to change the list of attributes of the stream that are projected.
Figure 12 shows the Df P L.K.Server that extends K.Server
with List. The L.K.WSERVER is extended again with a new
output port. The same happens to the L.PROJECT box, that
now also receives a list of attributes to project.

Fig. 12: The Df P L.K.Server.

After extending K.parallel sort by List and the paral-
lel implementation of L.PROJECT, we can again replay the
derivation to obtain an implementation for the new extended
specification.

Readers may have observed the following:
• Server, K.Server, and L.K.Server are members of a

small product line of servers. This product line has two
optional features Key and List, which means that another
member of this product line is L.Server—a server with
the ability to change the attributes that are projected.

• The PIMs of SCFT and ACFT are related by extension—
a R (recovery) feature. That is, ACFT= R.SCFT.

• Not only can interfaces and algorithms be extended,
so too can RDM rules. We saw examples above,
such as K.(SORT → parallel sort) = K.SORT →
K.parallel sort. That is, extensions of interfaces and
algorithms induce extensions of their rewrite rules.

Henceforth we write e K.e to mean element e is extended to
element K.e, where an element can be an interface, primitive,
algorithm, rewrite rule, or RDM.

A. Example: Extending SCFT Rules with Recovery

Illustrating SCFT rewrite rule extensions to their ACFT
counterparts is the topic of this section. We illustrate how we
obtain the rewrite rules used to derive ACFT PSM from the



rewrite rules previously used to derive SCFT PSM, and note
other changes that need to be made to map the RDM for SCFT
to the RDM for ACFT.

The SCFT PIM  ACFT PIM is the transition from
Figure 7a to Figure 8a. The only change is VS R.VS, that is,
a server is extended to a recoverable server.

Note: Applying an extension E to a Df P α involves
applying E to each element e∈ α (connectors, ports,
and boxes) to produce an extended element E.e. In
many cases, E has no effect, meaning there is a fixed
point e = E.e. In the SCFT PIM  ACFT PIM
extension, only the server VS was effected by feature
R. All other ports, connectors, and boxes of Figure 7a
are unchanged. Readers may recognize additional
fixed point mappings in the rule extensions discussed
below.

Recall the rule VS→ list. This rule is extended to R.VS→
R.list by the indicated interface and algorithm extensions in
Figure 13. That is, new ports were added to R.L and R.S and
a new connector is added that connects these ports.

Fig. 13: Extending the VS→ list rewrite rule.

As another example, the server replicating rewrite rule
S→ reps is extended to R.S→ R.reps in Figure 14. Each
server S becomes a recoverable server R.S. Further, because
a server now must export a new port, new computations are
needed to produce output for that port. This is manifested by
the introduction of new Serial boxes, a new Qr box/interface,
and additional connectors. Eventually, new refinements must
be defined to map a Qr interface to its implementation(s).
These additional rules are present in the ACFT RDM, but
not in the SCFT RDM.

Fig. 14: Extending the S→ reps rewrite rule.

SCFT derivation uses optimizations to remove existing
SPoFs. The boxes involved in these optimizations are not
modified by recovery, so optimization rewrites are unchanged
and can be directly reapplied. There is also the need to
add a new optimization, as part of the transformation from
Figure 8d to Figure 8e, to eliminate SPoFs involving the boxes
Qr, RBcast, Serial (as box Qr was not part of the RDM
previously).

Thus, in general, experts know (and thus we know) how
features extend individual boxes, how features extend individ-
ual rewrite rules, and how features require new rules to be
added. This now brings us to describe the general process of
how features map RDMs to extended RDMs.

B. Encoding Product Lines of RDMs

We encode a product line of RDMs using the template
approach of Czarnecki [20]. All RDMs of a product line
are superimposed into a single composite model, called an
eXtended Reflo Domain Model (XRDM), and a specific RDM
(i.e. a specific member of the RDM product line) is obtained
by projection.

To encode the product line of RDMs, rule elements are
annotated with two attributes: a feature predicate and a feature
tag set. A feature predicate determines when a box, port, or
connector is part of an RDM. Given a subset of features F ,
and a model element e with predicate P, P(F ) is true if and
only if e is part of the RDM when F are the enabled features.

The feature tag set determines how a box is tagged. A tag is
a prefix that is added to a box’s name to identify the variant of
the box being used (e.g., L and K are tags of box L.K.WSERVER,
specifying that this box is a variant of the WSERVER with
features List and Key).

These same ideas are used to generalize rewrite rules.
Consider the VS → list rewrite rule extension shown in
Figure 13. The annotated rewrite rule that encodes this ex-
tension is depicted in Figure 15. Port R of boxes L and S are
annotated with predicate Recovery, i.e. they exist only when
recovery is enabled. Boxes VS, list, L, and S have tag set
{R} (i.e. its semantics depends on the presence of recovery
features). When projecting this rewrite rule with only the base
feature enabled, ReFlO produces the rewrite rule depicted in
Figure 16, where the model elements associated with feature
Recovery are hidden.

Recovery

{R} {R}

{R}

{R}

Recovery

Fig. 15: VS→ list rewrite rule.

C. Safe Composition

Df Ps must satisfy constraints in order to be valid (e.g. each
active input port must have one and only one active incoming
connector). ReFlO validates an RDM by testing the constraints



Fig. 16: Projected list algorithm.

of ReFlO’s RDM meta-model. When extensions were added,
ReFlO’s validation was modified to check only whether the
active elements in an XRDM (those permitted by the current
set of features) formed a valid RDM.

This alone is insufficient. A more important question is
whether all possible RDMs in the product line of RDMs that is
encoded by an XRDM are valid. This is particularly important,
as manually annotating an XRDM can be error prone.
ReFlO uses safe composition to verify that all members of

a product line are valid [21], [22]. The constraints checked by
ReFlO are:

• An interface must be defined if it is referenced by an
algorithm.

• An interface that is referenced by an algorithm must have
the same ports as the definition of that interface.

• An algorithm or primitive must have the same ports as
the interface it implements.

• The input ports of interfaces that are referenced by
an algorithm must have precisely one active incoming
connector.

• The output ports of an algorithm must have precisely one
active incoming connector.

ReFlO warns users if there is a combination of features that
produces an invalid RDM, providing information about the
type of error detected.

In addition, ReFlO also detects bad smells, i.e. situations
that do not invalidate an RDM, but are uncommon and likely
to be incorrect. The two cases we detect are:

• The input of an algorithm is not used.
• The output of an interface reference in an algorithm is

unused.

Whenever ReFlO detects a bad smell, the developer is warned,
so that (s)he can further check if the XRDM is correct.

D. Replaying Derivations

ReFlO keeps track of the transformations used in a
PIM 7→PSM derivation. In this way, after building a derivation
for the base Df P, developers can specify a new Df P (with
additional features) and ask ReFlO to replay the derivation.
ReFlO tries to reapply the same sequence of transformation

(or rather their extended counterparts), to the extended PIM.
As we have already seen, new transformations may be needed.
In this case, the developer has to manually finish the deriva-
tion. We now illustrate these ideas with another example from
Upright.

V. ILLUSTRATION

A. Adding Authentication to ACFT

We saw earlier how the recovery feature mapped Upright’s
SCFT design, its derivation and rewrites to Upright’s ACFT
design, its derivation and rewrites. We abbreviate this complex
mapping as SCFT ACFT. Upright has other features in its
complete design, e.g. SCFT ACFT AACFT . . . BCFT.
In this section we show how the ACFT server can be extended
with another feature, authentication, which is a next stage in
Upright’s design.

Briefly, Figure 17a is the PIM of AACFT. Box A.R.VS repre-
sents a recoverable server with authentication. The transition
from Figure 17a to Figure 17b exposes an authenticated re-
coverable network queue (A.R.L) before the recoverable server
(R.S), which processes authenticated messages. Authentication
adds a new box (V) before the network queue, that filters
invalid requests (according to authentication requirements). As
in the ACFT derivation, the process follows with the transition
from Figure 17b to Figure 17c, that performs a map-reduce of
A.R.L, R.S, and V.

SPoFs now need to be removed. In the transition from
Figure 17d to Figure 17e, we replay the optimizations used
in the ACFT derivation. Note that the sequential composition
of boxes Serial and F is no longer present (left red group of
boxes from Figure 8d). Instead, new optimizations are required
to remove the SPoF enclosed by the green boxes in Figure 17d,
and produce Figure 17e. The Df P of Figure 17e is Upright’s
PSM for the PIM of Figure 17a.

B. The XRDM

The PIM7→PSM base derivation of AACFT is obtained using
three refinements, specified by the rewrite rules VS→ list,
L→ paxos and S→ reps, that are feature-extended.

The annotated VS → list rewrite rule is presented in
Figure 18a. It contains the annotations already presented in
Figure 15. Additionally, box V was added and it is annotated
with predicate Authentication, i.e. it is only present when
authentication is enabled. The connector linking input I of
list and input I of L, when authentication is enabled, is
replaced by box V (and its connectors), therefore it is annotated
with predicate not Authentication (i.e. it is not present
when authentication is enabled). Boxes VS, list, and L have
the additional A (i.e. its semantics also depends on the presence
of authentication features). Figure 18b and Figure 18c show
how rewrite rules L→ paxos and S→ reps are annotated to
define recovery and authentication features.

The new rewrite rules, added to specify implementations for
new boxes that are introduced and to handle new opportunities
for optimization that arise, are annotated with a predicate
that is either Recovery or Authentication, depending on
whether they are required for recovery or authentication.

C. Adding Authentication to SCFT

The Upright XRDM was incrementally created by starting
with the RDM for SCFT and then adding support for recovery
and then authentication. Given this set of features, there is
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Fig. 17: AACFT PIM7→PSM derivation.

Authentication

not Authentication

Recovery

{R, A} {R}

{R, A}

Recovery

Recovery

{R, A}

{R, A}

Recovery

RecoveryRecovery

{R}

{R}

Recovery

(a)

(b)

(c)

Fig. 18: Rewrite rules annotated.

another PIM 7→PSM derivation we may be interested in: SCFT
with authentication (ASCFT).

This derivation is obtained replaying the refinements of
the derivation presented in Section V-A. In the absence of
recovery, there are some boxes that are no longer present in the
Df P. This affects the optimization step. We can again replay
the optimizations used in the AACFT, but now one optimization

was no longer applicable (the optimization of boxes enclosed
in the blue box in Figure 17d). In this particular case, ReFlOs
replay of a PIM 7→PSM mapping is complete and requires no
developer intervention.

VI. RECAP AND PERSPECTIVE

Figure 19 overviews of the derivations presented in this
paper. We started with a simple PIM of Upright (p0) and

p2

R

p1

p0

...
SCFT

R.p0A

R.p1

R.p2

A.p0

A.p1

A.p2

A

A.R.p0

A.R.p1

A.R.p2

...
ASCFT

...
ACFT

...
AACFT

Fig. 19: Derivations
presented.

showed how it was progressively
refined and optimized to its syn-
chronous crash fault PSM (p0 7→
SCFT). We then extended the SCFT
PIM with recovery, and repeated
the mapping (R.p0 7→ R.SCFT) to ob-
tain Upright’s asynchronous crash
fault PSM (ACFT = R.SCFT). Next,
we added the authentication feature
and repeated the mapping (A.R.p0 7→
A.R.SCFT) to obtain Upright’s au-
thenticated ACFT PSM (AACFT =
A.R.SCFT). We also explained a
third variant of Upright, authenti-
cated SCFT, in which authentication
is added to Upright’s SCFT design (A.p0 7→ A.SCFT).

This process was driven by creating the Upright XRDM
(described in Section V-B). The XRDM is a library of feature-
annotated rewrite rules. By specifying a particular set of



features, the XRDM can be projected (simplified) to a feature-
specific version of RDM (itself a set of rewrites) from which
a particular derivation of Upright can be reproduced.

Note: We could have defined higher-order (HO)
rewrites to map the rules of one RDM to another.
We quickly realized that HO rewrites would ul-
timately be unreadable: every feature combination
would have to include feature interactions, which
would require separate HO rewrites by themselves.1

When n features are composed, there could be
up to 2n feature interactions [23]. Although this
is highly unlikely, we concluded that writing sep-
arate RDM 7→RDM HO transformations for each
interaction is impractical. As rewrites with different
features are so similar, it is elementary to annotate
superimposed rewrites with features, as described in
[20], and just project out the rules that we need. If we
discover an interaction is missing, it is easy to add
missing pieces. In any case, we conceptually view
all mappings (HO and otherwise) as transformations;
we found that HO transformations are easier to
implement by annotations than by explicit rewrite
rules.

Encoded in the XRDM is a product line of RDMs—this
includes features and feature interactions. Given a PIM 7→PSM
derivation using an RDM, ReFlO can project a derivation to
reveal the derivation of a simpler design (one with fewer fea-
tures) or ReFlO can show a partial derivation of a PIM 7→PSM
where additional features are added. In the latter case, a
designer will need to add the missing transformations (refine-
ments or optimizations) to complete the PIM7→PSM mapping.

VII. RELATED WORK

Our work is an example of Design by Transformation
(DxT) [2] uses refinements, optimizations, and extensions to
incrementally map abstract Df P specifications to implementa-
tions. DxT is used for reverse-engineering as well as forward-
engineering [4], [13].

To the best of our knowledge, this is the first time SPLs of
Df Ps has been documented. We used an unusual combination
of techniques to accomplish this. There are several ways
in which features of SPLs can be implemented. Some are
compositional, including AHEAD [24], FeatureHouse [25],
and AOP [26], all of which work on code. Similar solutions
have been proposed to handle SPLs of models [27], [28].
ReFlO uses an annotative approach, where a single set

of artifacts containing all features/variants are superimposed,
and the artifacts (e.g. code, model elements) are annotated
with feature predicates to determine when these artifacts
are visible in a SPL member. Preprocessors are a primitive
example [29]. Code with preprocessor directives can be made
more understandable by tools that color code [30] or that

1If two features A and B interact, a third feature (A#B) indicates changes
to be made to A or B or both so that they work correctly together. A#B is a
2-way interaction; n-way interactions among n different features are possible.

extract views [31]. More sophisticated solutions exist, such as
XVCL [32], Spoon [33], Spotlight [34], or CIDE [35]. ReFlO
differs from those solutions in that it works at a model level.

Other annotative approaches also work at the model level.
In [36] an UML profile is proposed to specify model variability
in UML class diagrams and sequence diagrams. Czarnecki and
Antkiewicz [20] proposed a template approach, where model
elements are annotated with presence conditions (similar to our
feature predicates) and meta-expressions. FeatureMapper [37]
allows the association of model elements (e.g., classes and
associations in a UML class diagram) to features. Instead of
annotating Df P directly (usually too complex), we annotate
model transformations (simpler) that are used to derive Df P
implementations. This reduces the complexity of the annotated
models, and it also makes the extensions available when deriv-
ing other implementations, making extensions more reusable.

We provide an approach to extract an SPL from legacy
applications. RE-PLACE [38] is an alternative to reengineer
existing systems into SPLs. Other approaches have been
proposed with similar intent, employing refactoring tech-
niques [39], [40], [41].

Extracting variants from a XRDM is similar to program
slicing [42]. Slicing has been generalized to be used with
models [43], [44], in order to reduce its complexity and make
easier for developers to analyse models. In [45] Wasowski
proposes a slice-based solution where SPLs are specified using
restrictions, that remove features from a model, so that a
variant can be obtained.
ReFlO supports analyses to verify whether all variants

that can be produced meet the metamodel constrains. The
analysis is based on the solutions proposed by Czarnecki and
Pietroszek [21] and Thaker et al. [22].
ReFlO uses a dataflow notation to model programs and

transformations. Other tools specify Df P, such as Lab-
VIEW [5], Simulink [6], Weaves [7], Fractal [46], or
StreamIt [8]. More than a tool to specify Df Ps, ReFlO allows
the specification of transformations that can be used to map a
high-level Df P specification to an implementation with desired
properties regarding efficiency or availability, for example.
Moreover, with extensions ReFlO allows the specification of
product lines of such transformations (that expresses a product
line of Df Ps).

Graph grammars [47] provide a framework for specifying
graph transformations. With extensions, ReFlO specifies not
only graph transformations, but also how to map a set of
transformations to another set of transformations that have
been feature-extended.

VIII. CONCLUSIONS AND OUTLOOK

Reverse engineering a legacy Df P application is difficult.
A key to its success is choosing a representation that can
incrementally reveal a design’s complexity; doing so is a step
toward making Df P design more rigorous, analyzable, and
automated. The rigor that we gain using our approach comes
from expressing incremental design decisions as domain-
specific rewrites rules (a.k.a. design patterns or identities) that



are well-known to experts. Domain-experts have proofs or
demonstrations of correctness for these rewrites otherwise they
would not use them [1], [4], [10]. Our approach is analyzable.
We explained how ReFlO generalizes or simplifies derivations
of Df P designs through the addition or removal of features.
ReFlO can also guarantee the rewrite rules of a domain model
are type correct (meaning that they conform to the constraints
of rule metamodels). Our work provides a framework for
automated software development in an MDE style, where
model-to-text mappings can be used to generate the code for
a ReFlO-specified-and-derived Df P.

We validated our approach with a real-world case study:
Upright, a state-of-the-art crash fault tolerant server, and
presented ReFlO derivations of its SCFT, ACFT, AACFT, and
ASCFT designs. Other case studies are presented in [48]. We
believe that ReFlO is the first of many interactive environments
in which domain experts can use to reverse and forward
engineer domain-specific dataflow applications.
Availability. ReFlO can be downloaded at http://cs.
utexas.edu/users/schwartz/DxT/reflo/x/.
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of the variability in forty preprocessor-based software product lines,” in
ICSE, vol. 1, 2010.

[30] J. Feigenspan, M. Papendieck, C. Kästner, M. Frisch, and R. Dachselt,
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