
This is the author’s version of the work. Published in SoSyM.
The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-014-0403-7

ReFlO: An Interactive Tool for Pipe-And-Filter
Domain Specification and Program Generation

Rui C. Gonçalves · Don Batory · João L. Sobral

Abstract ReFlO is a framework and interactive tool

to record and systematize domain knowledge used by

experts to derive complex pipe-and-filter (PnF) applica-

tions. Domain knowledge is encoded as transformations

that alter PnF graphs by refinement (adding more de-

tails), flattening (removing modular boundaries), and

optimization (substituting inefficient PnF graphs with

more efficient ones). All three kinds of transformations

arise in reverse-engineering legacy PnF applications.

We present the conceptual foundation and tool capabil-

ities of ReFlO, illustrate how parallel PnF applications

are designed and generated, and how domain-specific

libraries of transformations are developed.

Keywords MDE, Tools, Software Architectures,

Design by Transformation, Refinement, Optimization,

Graph Transformations

1 Introduction

Component Based Software Engineering (CBSE) pro-

motes the development of software by graphically

wiring together reusable components. CBSE tools fos-

ter a circuit analogy to software development and, like

actual circuit design tools, can express hierarchical sys-

tems by levels of abstraction: a component at level i is

defined in terms of a circuit of more primitive compo-

Rui C. Gonçalves
Universidade do Minho, 4710–057 Braga, Portugal
E-mail: rgoncalves@di.uminho.pt

Don Batory
The University of Texas at Austin, Austin, TX 78712, USA
E-mail: batory@cs.utexas.edu

João L. Sobral
Universidade do Minho, 4710–057 Braga, Portugal
E-mail: jls@di.uminho.pt

nents at level i+1, recursively. CBSE is an early exam-

ple of Model Driven Engineering (MDE) where models

(ie hierarchical circuit diagrams) are transformed into

executables.

Pipe-and-filter (PnF) or streaming systems are

among the fundamental architecture styles used in

CBSE [30,17], where components are functions that

process data that is transmitted through wires [68,

32,64,12]. Some time ago, we were given the task to

re-engineer expert-created legacy PnF applications: a

parallel database query processor and a crash fault-

tolerant server. The PnF graphs of these systems were

spaghetti diagrams; our understanding of how these

systems worked was minimal. We could not explain

their PnF graphs nor did we know if they were correct.

Step-wise development provided an answer. We

start with an elementary PnF graph that cleanly

and abstractly describes the system to be reverse-

engineered. In MDE terms, this is a Platform Indepen-

dent Model (PIM): a model that does not constrain the

implementation or target platform and is an abstract

specification of what to build. We then derived the tar-

get PnF graph (a Platform Specific Model (PSM) [28])

by applying a series of transformations that are well-

known to engineers in that domain. Further, each trans-

formation was simple enough to be demonstratably cor-

rect (by proof or other means). Our derivations were

correct by construction [36].

We had to depart from contemporary CBSE tools

to admit architectural optimizations—the ability to re-

place a PnF subgraph with another PnF subgraph

that implements the same functionality, but in a dif-

ferent way (to yield improved quality metrics, like

performance). Optimizations were essential to our re-

engineering tasks; we could not derive legacy PnF

graphs without them. With Model-to-Text (M2T) trans-

2 Rui C. Gonçalves et al.

formations, we reproduced these legacy applications

from our models.

Our critical insight was to recognize that the trans-

formations used to derive a PnF graph are building-

blocks just as important as the components used in the

application itself.

This paper presents ReFlO, an interactive tool that

embodies a derivational approach to PnF graphs. Ini-

tially we used ReFlO to reverse-engineer the design of

legacy applications—an example of which we illustrate

in this paper. Over time, the library of transformations

that are used in deriving a family or domain of simi-

lar applications becomes extensive enough for forward-

engineering. That is, given a PIM of an application,

cataloged transformations can be used to mechanically

derive the space of all PSMs and automatically select

the most efficient. Our work on forward-engineering

is not the focus of this paper and is detailed else-

where [47]. Nonetheless, the strong connection of ReFlO

to forward-engineering demonstrates the significance of

derivational approaches.

The contributions of this paper are:

– a simple way to encode domain knowledge of PnF

graph construction as transformations;

– how ReFlO can be used as an interactive design tool

to derive custom PnF graphs;

– an explanation why the Perry Substitution Princi-

ple, rather than the Liskov Substitution Principle,

is central to derivational development of optimized

PnF programs;

– how ReFlO provides a framework to allow different

interpretations of PnF graphs to compute properties

about them (besides producing executables); and

– how multiple derivations of a PSM can expose new

transformation rules of a domain.

2 Foundational Concepts: Part I

2.1 PnF Graphs, Refinements, and Optimizations

Fig. 2.1 The PnF graph ProjectSort.

A pipe-and-filter (PnF) graph [30] is a directed

multigraph, where boxes (components) process data

that is passed to other boxes via connectors (pipes).

Boxes may receive inputs from different sources and

compute zero or more outputs. Input ports are drawn

as nubs on the left-side of boxes; output ports are drawn

as nubs on the right. A connector links an input port to

an output port. Figure 2.1 shows a PnF graph modeling

a program, called ProjectSort, that projects (elimi-

nates) attributes of the tuples of its input stream and

then sorts them.

We call boxes PROJECT and SORT interfaces as they

specify only abstract behavior (their inputs and out-

puts, and, informally, their semantics). Besides input

ports, boxes may have other inputs that are not shown

graphically, such as the sort key for the SORT box or

the list of attributes to remove for the PROJECT box.

We call the former essential parameters and the latter

additional parameters [18].

Figure 2.1 is a PIM as it makes no reference to or

demands on its concrete implementation. It is a high-

level specification that can be adapted to a particular

platform or for particular inputs. Adaptation is accom-

plished in ReFlO by applying transformations.

A transformation can map an interface directly to a

primitive box, representing a concrete code implemen-

tation. Besides primitives, there are other implementa-

tions of an interface that are expressed as a PnF graph,

called algorithms. Algorithms may reference interfaces.

Figure 2.2 is an algorithm. It shows the PnF graph

called parallel sort of a map-reduce implementation

of SORT. Each box inside Figure 2.2, namely SPLIT,

SORT and SMERGE (sorted merge), is an interface which

can be subsequently elaborated.

Fig. 2.2 parallel sort implements SORT by map-reduce.

Refinement [77] is the replacement of an interface

with one of its implementations (primitive or algo-

rithm). By repeated refinements, eventually a graph of

wired primitives is produced.

Figure 2.1 can be refined by replacing SORT with its

parallel sort algorithm and PROJECT with a similar

map-reduce algorithm. Doing so yields the graph of Fig-

ure 2.3(a), or equivalently the graph of Figure 2.3(b),

obtained by removing modular boundaries. Removing

modular boundaries is called flattening .

Refinements alone are insufficient to derive complex

PnF graphs. Look at Figure 2.3(b). We see a MERGE

followed by the SPLIT operation, that is, two streams

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 3

(a)

(b)

Fig. 2.3 Parallel version of ProjectSort.

Fig. 2.4 Two implementations of the IMERGESPLIT interface.

are merged and the resulting stream is immediately

split again. Let interface IMERGESPLIT be the opera-

tion that receives two input streams, and produces two

other streams, with the requirement that the union of

the input streams is equal to the union of the output

streams (see Figure 2.4). ms mergesplit is one of its

implementations. However, the ms identity algorithm

provides an alternative implementation that is obvi-

ously more efficient than ms mergesplit as it does not

require MERGE and SPLIT computations.1

We can use ms identity to optimize ProjectSort.

The first step is to abstract Figure 2.3(b) with the

IMERGESPLIT interface, obtaining Figure 2.5(a). Then,

we refine IMERGESPLIT to its ms identity algorithm,

to obtain the optimized graph for ProjectSort (Fig-

ure 2.5(b)). We call the action of abstracting an (in-

efficient) composition of boxes to an interface, and

then refining it to an alternative implementation an

optimization.2 This transformation—or rather, com-

position of transformations—effectively allows ineffi-

cient subgraphs that arise after removing the modular

1 Readers may notice that algorithms ms mergesplit and
ms identity do not necessarily produce the same result. How-
ever, both implement the semantics specified by IMERGESPLIT,
and the result of ms identy is one of the possible results of
ms mergesplit, ie ms identity removes non-determinism.
2 Although called optimizations, they do not necessarily im-

prove performance, but combinations of them typically do.

boundaries of refinements to be replaced with alterna-

tive subgraphs, which provide the same behavior, while

improving performance.

(a)

(b)

Fig. 2.5 Optimization of ProjectSort.

2.2 Perry Substitution Principle

By studying several legacy applications from the same

domain, it becomes obvious that there is a set of

transformations that are commonly used in derivations.

The collected set of transformations contains inter-

face/implementation pairs (I, A), which we call rewrite

rules, and specifies two distinct kinds of transforma-

tions:

– Refinement I A: An interface I is replaced by a

graph A which represents a primitive or algorithm,

and

– Abstraction A I: A graph A is replaced by in-

terface I.

Under what circumstances is a rewrite rule permitted?

A possible answer is based on the Liskov Substitution

Principle (LSP) [43], which is a foundation of object-

oriented design. LSP states that if A is a subtype of I,

then objects of type A can be substituted for objects of

type I without altering the correctness properties of a

program. Substituting an interface with an implement-

ing object (component) is standard fare today and is

a way to realize refinement in LSP [49,74]. The techni-

cal rationale behind LSP is that preconditions for using

subtype A can not be stronger than preconditions for

type I, and postconditions for A are not weaker than

that for I [43]:

pre(I)⇒ pre(A) (2.1)

post(A)⇒ post(I) (2.2)

4 Rui C. Gonçalves et al.

To our surprise, LSP is too restrictive when specify-

ing ReFlO graph rewrite rules, as implementations are

often accompanied by preconditions that are not required

by their interfaces. Such implementations are usually

more efficient than those that are not as specialized [8].

Example 2.1 Figure 2.6 shows three implementations

of the SORT interface: a map-reduce algorithm, a

quicksort primitive, and a do nothing algorithm.

do nothing says: if the input stream is already in sorted

order (a precondition not present in SORT but defi-

nitely present for do nothing), then there is no need to

sort. The (SORT, do nothing) rewrite rule violates LSP:

do nothing implementation has stronger preconditions

than its SORT interface. This is a common situation in

graph rewrite rules.

Fig. 2.6 Two algorithms and a primitive implementation of
SORT.

Forcing our rewrite rules to comply with LSP, the

standard notion of substitutability for object-oriented

interface/implementation refinements, we would not be

able to derive the optimized programs that domain ex-

perts created manually. When looking for alternative

notions of substitutability, we found an existing prece-

dence for a solution. Let A and I be boxes, and pre

and post denote the pre- and postconditions of a box.

Perry [54] defined that A is upward compatible with I

if:

pre(A)⇒ pre(I) (2.3)

post(A)⇒ post(I) (2.4)

ie A requires and provides at least the same as I. We

call this the Perry Substitution Principle (PSP). It al-

lows the specification of implementations specialized for

certain inputs, essential to allow the derivation of opti-

mized program implementations.

Not requiring rewrite rules to conform to LSP, and

allowing an interface to be replaced with an imple-

mentation with stronger preconditions, means that a

rewrite rule is not always applicable (it depends on the

PnF graph we are refining). To guarantee that the be-

havior of the PnF graph is preserved when replacing

interface I with implementation A, we must guarantee

that the preconditions of A are met (in the context of

PnF graph being transformed). If not, ReFlO disallows

it.

Consider the do nothing implementation of SORT

and ProjectSort of Figure 2.1. Algorithm do nothing

has a precondition that requires its input to be sorted in

an appropriate order (eg on ascending values of field F).

We can use this rewrite rule in ProjectSort (to replace

SORT) only if this precondition is met, ie if PROJECT has

a postcondition specifying its output is sorted in as-

cending F order. Typically, PROJECT provides no such

postcondition, thus ReFlO disallows do nothing algo-

rithm for ProjectSort. However, if PROJECT exported

a postcondition specifying the sort order of its output,

the input of SORT was in ascending F order, do nothing

would be a valid replacement of the SORT interface. In

this scenario, even though do nothing has stronger pre-

conditions than SORT, it can be used, and the behavior

of ProjectSort would be preserved.

If we assure the preconditions of the implementa-

tion being added (A) are met in the PnF graph being

transformed (taking into account the postconditions of

the boxes that compute the inputs of A), we guaran-

tee that the transformation preserves the behavior of

the PnF graph being transformed (ie no precondition

is added to the PnF graph, and the postconditions are

preserved).

Rewrite rules used in abstraction transformations

A I have stronger constraints. An abstraction implies

that a graph A must implement I, ie I A. For both

constraints to hold, the pre- and postconditions of A

and I must be equivalent:

pre(I)⇔ pre(A) (2.5)

post(I)⇔ post(A) (2.6)

To summarize, refinement is a general concept [53].

In object-oriented designs, refinement is often realized

by LSP, substituting an interface with an implementing

object. In MDE, a refinement typically corresponds to

mapping of a model of one type (metamodel) to that

of another. In the world of ReFlO graph rewrites, re-

finement is expressed by rewrite rules satisfying PSP.

Differences in the rules followed in MDE and object-

oriented worlds have also been documented before.

Wimmer et al. noticed that inheritance in model trans-

formations require covariant input types, whereas in

object-oriented world contravariant input types is re-

quired for methods’ inheritance [75,42].

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 5

3 Domain Model Specification

ReFlO (Refine, Flatten, and Optimize) is an interac-

tive tool to draw and derive PnF graphs, built upon

the ideas of Design by Transformation (DxT) [60]. The

rewrites that ReFlO applies are taken from a domain

model—a library of graph transformations whose struc-

ture we explained in Section 2. ReFlO provides support

for experts build such models.

3.1 Basic Features of a Domain Model

A ReFlO Domain Model (RDM) is a set of ordered

pairs that associate an interface with an implement-

ing algorithm or primitive. That is, a RDM encodes a

library of transformations that can be applied to pro-

grams in a given domain. ReFlO provides the follow-

ing objects to create RDMs: interfaces, primitives, al-

gorithms, input/output ports, connectors, implementa-

tion links, and patterns. The UML class diagram of the

RDM metamodel is Figure 3.1.

name : String
replicated : String
doc : String

Element

parameters : String

Box

template : String

Interface

Algorithm

Implementation

Pattern

Connector

dataType : String

Port

Output

Input

source

1

target

*
ports *

1
source

outgoing

*
1
target

incoming

* elements

connectors *

Primitive
1

Fig. 3.1 RDM UML class diagram.

An interface is a named box with input and out-

put ports. A primitive is drawn identically, except that

primitives have a gray background whereas interfaces

are white (Figure 2.6). Every port of a box has a unique

name (to distinguish it from other ports) and a data

type. A connector links a source port to a target port.

An algorithm is a named box with I/O ports that

encloses a PnF graph.3 A pattern is a special algorithm

that not only implements its interface, but also specifies

that its graph can be replaced with (or abstracted to)

an interface, as part of an optimization. ReFlO graph-

ically distinguishes patterns as dashed-line boxes from

algorithms that are solid-line boxes (see Figure 2.4).

3 We refer to the interfaces (boxes) contained inside an al-
gorithm as internal interfaces (boxes), and to the algorithm as
the parent box of those interfaces.

A domain model is specified in ReFlO by defining

each interface, primitive, and algorithm. A rewrite rule

is an ordered pair (interface, primitive) or (interface,

algorithm) which is drawn/specified by an implemen-

tation link (a dashed arrow) connecting an interface to

an implementation.

Example 3.1 Figure 2.6 defined three implementations

of the SORT interface: the parallel sort algorithm, the

quicksort primitive, and the do nothing algorithm.

Example 3.2 Figure 2.4 specified that pattern

ms mergesplit can be abstracted to the IMERGESPLIT

interface, which can then be refined to the ms identity

algorithm. This compound rewrite was the optimiza-

tion that we used earlier.

3.2 Advanced Features

3.2.1 Additional Parameters

Every box has a parameters attribute which holds a

comma-separated list of names, data types and values

that specify the box’s additional parameters. The value

of an additional parameter may be a constant or the

value of a parameter of its parent box. Additional pa-

rameters keep ReFlO diagrams simpler, allowing devel-

opers to focus on the essential parts of the model.

3.2.2 RDM Documentation

Transformation rules must be documented so that oth-

ers who inspect PnF graphs can understand the rules

that were used to derive it. ReFlO boxes and ports have

the doc attribute, where designers can place a textual

description of model elements. ReFlO generates HTML

documentation that contains the figures of boxes and

their descriptions. This allows users to reference HTML

pages for rule definitions. The HTML documentation

for the rules that we use later in our case study

is at http://www.cs.utexas.edu/users/schwartz/

DxT/case-studies/gamma/models/databases.html.

3.2.3 Templates

Many rewrite rules are parameterized clones of each

other. ReFlO was designed so that any rewrite rule could

be used as a template. Every rewrite rule has a template

attribute; if its value is null, the rule is not a template.

A non-null value specifies (template box name, con-

crete box name) bindings to create a new instance of

the rewrite rule. Typically, a non-null value specifies

http://www.cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/models/databases.html
http://www.cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/models/databases.html

6 Rui C. Gonçalves et al.

multiple groups of bindings, one binding for every new

instance of a rule. Details are given in [31].

Example 3.3 The rewrite rules of Figure 3.2 define an

optimization. Whenever box x1 is followed by box x2,

where x2 = x−1
1 (the inverse operation of x1), box x2

can be removed, yielding algorithm idx1.

Fig. 3.2 A template with parameters optid, x1 and x2.

Figure 3.2 is a template for stamping out customized

copies of itself. Using these bindings {(optid, OptIdF),

(x1, F1), (x2, F2)} where F2 = F1−1, ReFlO produces

the customized rewrite rules of Figure 3.3. Additional

bindings can produce other instances. Templates pro-

vide an elementary form of high-order transformations

that reduce modeling effort [71].

Fig. 3.3 A template instance.

3.2.4 Replicated Elements

Figure 2.2 showed the parallel sort algorithm where

two instances of SORT are performed in parallel. We

want to specify a rewrite with an arbitrary number of

instances. We use replicated elements. Ports and boxes

have a [bracketed attribute] that specifies replication. If

brackets are absent, the element is not replicated. If a

bracket contains an upper case letter, that is interpreted

as a replication variable that specifies how many times

the element is replicated.4 Thus, box B[N] means that

there are N instances of box B (Bi, for i ∈ {1 . . . N}).
Similarly for ports.

Example 3.4 Figure 3.4 expresses parallel sort in a

more general way. SPLIT has N output ports {O1 . . . ON}.
There are N SORT boxes {SORT1 . . . SORTN}. SPLIT output

port Oi is connected to input port I of SORTi. Finally,

the input port I of SMERGE is replicated {I1 . . . IN}. The

output of SORTi is connected to SMERGE input port Ii.

Figure 2.2 is produced by setting N = 2.

Fig. 3.4 parallel sort with replicated elements.

Example 3.5 Figure 3.5 defines transformations where

elements can be replicated a different number of times.

The interface has N inputs and M outputs. Each pattern

replicates some elements N times and others M times.

Fig. 3.5 MERGE− SPLIT cross product.

ReFlO has specific rules for replicating connectors (ie

connectors linking replicated ports or ports of repli-

cated boxes). Using the notation B.P to represent port

P of box B, given a connector from output port O of box

B to input port I of box C, the rules are:

– When O is replicated N times and B is not (which

implies that either I or C is also replicated N times),

connectors link B.Oi to C.Ii or Ci.I (depending on

which is replicated), for i ∈ {1 . . . N}.
– When B is replicated N times and O is not (which

implies that either I or C is also replicated N times),

connectors link Bi.O to C.Ii or Ci.I (depending on

which is replicated), for i ∈ {1 . . . N}.
4 At design time, the variable only allow us to determine

whether to elements are replicated the same number of times.
These variables can be instantiated when generating code.

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 7

– When B is replicated N times and O is replicated

M times (which implies that both C and I are also

replicated), connectors link Bi.Oj to Cj.Ii, thereby

implementing a crossbar , for i ∈ {1 . . . N} and j ∈
{1 . . . M} (this implies that C is replicated M times,

and I is replicated N times).

Example 3.6 Figure 3.6 is the result of setting N and

M to 2 in algorithm msnm splitmerge from Figure 3.5.

Note the crossbar resulting from connectors that link

replicated ports of replicated boxes.

Fig. 3.6 msnm splitmerge pattern without replication.

The mapping of a PIM to a PSM in ReFlO is discussed

next.

4 Interactive Derivation of PSMs from a PIM

ReFlO is an interactive tool that allows designers to (1)

define an RDM, (2) define a PIM, and (3) use the trans-

formations of an RDM to progressively rewrite a PIM

into a PSM. In the typical use, a domain expert starts

by using ReFlO to reverse-engineer legacy programs.

During this process, he replays the development pro-

cess, adding to the RDM the transformations that he,

sometimes unconsciously, applied to code. The RDM

may then be used by other developers to optimize their

programs (directly in ReFlO, or exporting the RDM to

an external tool [46]).

The actions domain experts and developers can in-

voke when transforming a PnF graph are:

– Refine replaces a user selected interface with one of

its implementations. ReFlO examines each potential

refinement and only displays those that satisfy the

I G constraints of Section 2.2.5 If only one option

is available, ReFlO automatically selects it.6

5 In Section 5.2 we provide additional details about how
ReFlO verify these constraints.
6 Replication parameters of an interface are used to set

the replication parameter(s) of an implementation. If an im-
plementation has replication parameters that are not present
in the interface, the user is asked to provide a value for the
parameter.

– Flatten removes the modular boundaries of the se-

lected graph that result from refining a PnF graph.

If the graph to be flattened was replicated, this in-

formation is pushed down to its internal boxes.

– Abstract replaces the selected boxes with the inter-

face they implement. ReFlO matches selected boxes

with the patterns in the RDM. Unlike in refine-

ments, no preconditions check is needed to decide

whether a pattern can be replaced by the interface.

However, to decide whether the selected boxes are

an instance of the pattern G we need to put the mod-

ular boundaries of G around the boxes, and verify

if G preconditions are met. That is, it is not enough

to verify if the selected boxes have the shape of the

pattern. If one match is found, the pattern is re-

placed by its interface. If multiple patterns match,

the user is asked to choose one.7

– Optimize performs an abstraction, refinement, and

flattening as a single step, replacing the selected set

of boxes with an equivalent implementation.

Example 4.1 ReFlO maps Figure 4.1(a) to 4.1(b) by

applying the optimization of Figure 3.5. (Note the

replication variables X and Y of the original graph

are used to define the replication variables of the

new graph.)

(a)

(b)

Fig. 4.1 Optimizing a parallel version of ProjectSort.

– Find Optimization locates all possible matches

for the patterns in the RDM that exist inside the

selected graph. The interfaces that comprise the

matches are identified setting their attribute label

to contain a tag identifying the match(es).

Example 4.2 Applying find optimization to the

ProjectSort graph of Figure 2.3b results in the

7 The values of replication parameters of the pattern are
used to define the replication parameters of the interface. The
same is done to define the values of the additional parameters
of the new interface.

8 Rui C. Gonçalves et al.

graph of Figure 4.2, where we can see that two boxes

are part of a match (of pattern ms mergesplit).

Fig. 4.2 The label shown after the name of boxes MERGE and
SPLIT indicates that they are part of a match of pattern
ms mergesplit.

– Expand expands replicated boxes and ports of a

graph. For each replicated box, a copy is created.

For each replicated port, a copy is created (suffixes

1 and 2 are added to names of original port and

its copy, respectively, as two ports cannot have the

same name). Connectors are copied according to the

rules previously defined.

Example 4.3 Figure 4.3 is an expansion of Fig-

ure 4.1(b).

Fig. 4.3 Expanding the parallel, replicated ProjectSort.

5 Foundational Concepts: Part II

5.1 Interpretations

A PnF graph P may have many interpretations. The

default is to interpret each box of P as the compo-

nent it represents. That is, SORT means “sort the in-

put stream”. We call this the standard interpretation

S. The standard interpretation of box B is denoted S(B)

or simply B, eg S(SORT) is “sort the input stream”. The

standard interpretation of graph P is S(P) or simply P.

There are other interpretations of P. ET interprets

each box B as a computation that estimates the execu-

tion time of S(B), given statistics about S(B)’s inputs.

So ET (SORT) is “return an estimate of the execution

time to produce SORT’s output stream”. Each box B ∈ P

has exactly the same number of inputs and outputs as

ET (B) ∈ ET (P), but the meaning of each box as well as

the types of each of its I/O ports are different.

Example 5.1 ET (ProjectSort) estimates the execu-

tion time of ProjectSort for an input I whose statistics

(tuple size, stream length, etc.) is ET (I).

Example 5.2 We said in Section 1 that an RDM can be

used to forward-engineer (eg derive) all possible PSMs

from an input PIM. The estimated run-time of a PSM

P is determined by executing ET (P). The most efficient

PSM that implements the PIM is the one with the low-

est estimated cost [48].

Example 5.3 M2T (ProjectSort) is a model-to-text

interpretation that maps ProjectSort to executable

code.

Example 5.4 Pre- and postconditions guarantee the

correctness of ReFlO graphs. Each is encoded as a dis-

tinct interpretation, discussed further in Section 5.2.

In general, an interpretation I of graph P is an iso-

morphic graph I(P), where each box b ∈ P is mapped

to a unique box I(b) ∈ I(P) and each edge b1 → b2 ∈ P

is mapped to a unique edge I(b1) → I(b2) ∈ I(P).

In ReFlO, graph I(P) is identical to P, except that the

bindings of all boxes to computations are different.

5.1.1 Implementing Interpretations

It is reasonable to expect that each interpretation would

be written in its own domain-specific language (DSL).

Creating such DSLs was not critical to our goal of de-
veloping and demonstrating ReFlO. Indeed, this would

be an entire research project unto itself. Instead, we

chose to write each interpretation in Java. For each in-

terpretation and box, a Java class must be provided

by a developer. Every interpretation is represented by

a collection of classes, one per box, that is stored in

a unique Java package whose name identifies the inter-

pretation. Thus, if there are n interpretations, there will

be n Java packages provided by a domain designer.

Each class has the name of its box and must extend

abstract class AbstractInterpretation that is pro-

vided by ReFlO (see Figure 5.1). Interpretations grow

in two directions: (i) new boxes can be added to the

domain, which requires new classes to be added to each

package, and (ii) new interpretations can be added,

which requires new packages.

Each interpretation maintains its own data, which

we call properties. The behavior of an interpretation

is specified in method compute. It computes and stores

properties that are associated with its box or ports. For

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 9

compute() : void
getAddParam(paramName : String) : String
getBoxProperty(name : String) : Object
getParentProperty(name : String) : Object
getInputProperty(port : String, name : String) : Object
getOutputProperty(port : String, name : String) : Object
setBoxProperty(name : String, value : Object) : void
setParentProperty(name : String, value : Object) : void
setInputProperty(port : String, name : String, value : Object) : void
setOutputProperty(port : String, name : String, value : Object) : void
addError(errorMsg : String) : void

AbstractInterpretation

Fig. 5.1 The AbstractInterpretation class.

AbstractInterpretation

int1.BoxA int1.BoxB int2.BoxA int2.BoxB

(a)

AbstractInterpretation

int1.BoxA

int1.BoxB int2.BoxBint2.BoxA

int2.Super

(b)

Fig. 5.2 Class diagrams for two interpretations int1 and
int2.

each box/port, properties are stored in a map that as-

sociates a value with a property identifier.8 Abstract-

Interpretation provides get and set methods for ac-

cessing and modifying properties.

A typical class structure for interpretations is shown

in Figure 5.2(a), where all classes inherit directly from

AbstractInterpretation. Nevertheless, more com-

plex structures arise. For example, one interpretation

may inherit from another (this is common when defin-

ing preconditions, as an algorithm has the same pre-

conditions of the interface it implements), or there may

be an intermediate class that implements part (or all)

of the behavior of several classes (usually of the same

interpretation), as depicted in Figure 5.2(b). Besides

requiring classes to extend AbstractInterpretation,

ReFlO allows developers to choose the most convenient

class structure for the interpretation at hand.

8 This map is similar to java.util.Properties except that
values are of type Object instead of String.

Although ReFlO expects a Java class for each box,

if none is provided, ReFlO automatically selects an ap-

propriate default class with an empty compute method.

That is, in cases where there are no properties to set,

no class needs to be provided.

Example 5.5 ReFlO generates complete executables in

M2T interpretations; so interface boxes have no map-

pings to code.

Example 5.6 Interpretations that set a ports’ property

usually do not need to provide a class for algorithms, as

the properties of their ports are set when executing the

compute methods of their internal boxes. This is the

case of interpretations that compute postconditions, or

interpretations that compute data sizes.

However, there are cases where properties of an al-

gorithm cannot be inferred from its internal boxes. A

prime example is the do nothing algorithm—it has pre-

conditions, but its internals suggest nothing. (In such

cases, a Java class is written for an algorithm to express

its preconditions.)

ReFlO executes an interpretation in the following

way: for each box in a graph, its compute method is

executed, with the execution order being determined

by the topological order of the boxes (in the case of

hierarchical graphs, the interpretation of an algorithm

box is executed before the interpretations of its internal

boxes). After execution, a developer (or ReFlO) may

select any box and examine its properties.

5.1.2 Forward and Backward Interpretations

Usually, edges of an interpretation I have the same di-

rection of the corresponding edge of interpretation S.

We have found cases where to compute some property

about a graph it is convenient to invert the direction

of the edges so that information flows right-to-left. In

this case, an edge b1 → b2 ∈ P maps to a unique edge

I(b1) ← I(b2) ∈ I(P). We call such interpretations

backward and the others are forward .

5.1.3 Composition of Interpretations

To make all of the above work, interpretations must

be composable. Each interpretation computes certain

properties of a program P, and it may need properties

that are computed by other interpretations, eg to esti-

mate the execution cost of a box, we may need an esti-

mate of the volume of data output by a box. The same

property (volume of data) may be needed for other in-

terpretations (eg preconditions). Therefore, it is useful

10 Rui C. Gonçalves et al.

to separate the computation of each property, in order

to improve interpretation modularity and reusability.

ReFlO supports the composition of interpretations,

where two or more interpretations are executed in se-

quence. An interpretation has access to the properties

computed by previously executed interpretations. For

example, an interpretation to compute data sizes (DS)

can be composed with one that uses data size estimates

to form cost estimates (ET). This is the compound in-

terpretation (ET ◦DS)(P) = ET (P)◦DS(P). This allows

interpretation DS to be composed (reused) with other

interpretations that also need data sizes.

5.2 Pre- and Postconditions

We use interpretations to compute box postconditions

and then verify their preconditions, rather than provid-

ing a custom DSL for this purpose (ie pre- and postcon-

ditions are specified in the same language/framework

used for other interpretations, currently Java).

Postconditions are evaluated by the POST inter-

pretation. POST computes the properties that are out-

put by a box given the properties that are input to

that box. The postconditions of algorithms and pat-

terns are inferred from the postconditions of their in-

ternal boxes.9

Preconditions are evaluated by the PRE interpreta-

tion. PRE reads the values of the properties about box

inputs (computed by POST), and checks if the precon-

ditions of that box are satisfied. The method addError

is used to send a message to ReFlO signaling a failure

validating precondition. Thus, ReFlO uses PRE◦POST
for computing postconditions and validating precondi-

tions.

When a user tries to apply a transformation, ReFlO

builds the list of possible replacements for the selected

box(es). The POST interpretation is then executed, to

compute the postconditions for each box in the graph

that is to be transformed. ReFlO then evaluates the

PRE interpretation on each replacement graph. If no

precondition error is reported, the replacement graph

is legal, otherwise it is disallowed.

Example 5.7 In Section 2.2 we mentioned the

do nothing implementation of SORT. To use such

rewrite rule we are required to keep track of how

streams are sorted. Thus, we associate a property to

output ports, called SortKey. When a stream is sorted,

9 ReFlO ignores the specification of explicit postconditions
for algorithms or patterns. This prevents postconditions from
being specified that are stronger than those computed from
its internal boxes.

SortKey is set to the sorting attribute. If unsorted,

SortKey has an undefined value. The SORT box sets

this property to its sort key, to specify its output is

sorted. Other boxes may change the order of the stream

without sorting it, in which case the SortKey property

is set to undefined. Alternatively, a box may preserve

stream order, in which case the sort key property of the

input stream is copied to the sort key property of the

output stream. The do nothing algorithm reads the

value of SortKey for its input stream, and compares it

to the value of the desired order. If the sort keys are

different, the do nothing rewrite is invalid.

6 Case Study: Gamma Hash Join

This section serves a dual purpose: (1) to present a case

study using DxT to re-engineer a legacy PnF applica-

tion and (2) to illustrate how an RDM can be populated

with rewrites. We have observed that there can be many

ways in which a complex PnF graph can be derived;

each derivation uses a slightly different or larger set of

rewrites than other derivations. By exploring multiple

derivations, the RDM is enriched and a better under-

standing of a design is achieved. Each of the rewrites

that we present in this section have been proven cor-

rect [7].

Gamma was (and perhaps still is) the most

sophisticated relational database machine built in

academia [19]. It was created in the late 1980s and

early 1990s without the aid of modern software archi-

tectural models. We focus on Gamma’s join paralleliza-

tion, which is typical of modern relational database

machines, and use ReFlO screenshots to incrementally

illustrate Gamma’s derivations.10 11

6.1 A Modicum of Domain Knowledge

Of course, to appreciate the rewrites that Gamma uses,

one needs a modicum of domain knowledge about re-

lational query processing. We assume this, providing

references that elaborate such knowledge.

Look at Figure 6.1: it shows interface HJOIN (read

“hash join”) with three different implementations: a

primitive, a map-reduce algorithm, and a bloom filter

algorithm.

10 The RDM used in this derivation is available at
http://cs.utexas.edu/users/schwartz/DxT/case-studies/

gamma/models/databases.html.
11 For simplicity, the derivation presented does not use
replication. A derivation using replication is available
at http://cs.utexas.edu/users/schwartz/DxT/case-studies/

gamma/architectures/cascadejoin-rep/.

http://cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/models/databases.html
http://cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/models/databases.html
http://cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/architectures/cascadejoin-rep/
http://cs.utexas.edu/users/schwartz/DxT/case-studies/gamma/architectures/cascadejoin-rep/

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 11

Fig. 6.1 HJOIN rewrite rules.

The primitive hash join implementation is simple:

read all tuples of stream A into a main-memory hash

table, where the join key of A tuples are hashed. Then

read stream B, one tuple at a time. By hashing a B

tuple’s join key, one can quickly identify all A tuples

that join with the B tuple. This algorithm has linear

complexity in that each A and B tuple is read once.

The parallelization of HJOIN is textbook [5]: both

input streams A, B are hash-split on their join keys using

the same hash function. Each stream Ai is joined with

stream Bi (i ∈ {1, 2}), as we know that Ai on Bj = ∅
for all i 6= j (equal keys must hash to the same value).

By merging the joins of Ai on Bi (i ∈ {1, 2}), A on B is

produced as output.

A very different HJOIN algorithm makes use of

Bloom filters to reduce the number of tuples to join [11].

It uses two new boxes: BLOOM (to create the filter) and

BFILTER (to apply the filter). We call this algorithm

bloomfilterhjoin. Here’s how it works: the BLOOM box

takes a stream of tuples A as input and outputs exactly

the same stream A along with a bitmap M. The BLOOM

box first clears M. Each tuple of A is read, its join key is

hashed, the corresponding bit (indicated by the hash)

is set in M, and the A tuple is output. After all A tuples

are read, M is output. M is the Bloom filter .

The BFILTER box takes Bloom filter M and a stream

of tuples A as input, and eliminates tuples of A that

cannot join with tuples used to build the Bloom filter.

The algorithm begins by reading M. Stream A is read

one tuple at a time; the A tuple’s join key is hashed,

and the corresponding bit in M is checked. If the bit is

unset, the A tuple is discarded as there is no tuple to

which it can be joined. Otherwise the A tuple is output.

A new A stream is the result.

Finally, output stream A of BLOOM and output

stream A of BFILTER are joined. Given the behaviors of

the BLOOM, BFILTER, and HJOIN boxes, it is easy to prove

that bloomfilterhjoin does indeed produce A on B [7].

We are now ready to present two derivations of

Gamma: the first and simplest refines HJOIN by map-

reduce first and then by bloom filter. The second swaps

the order by refining HJOIN with bloom filter first,

and then map-reduce. This seemingly minor difference

yields a surprising wealth of rewrites.

6.2 Gamma – A Short Derivation

A hash join is an implementation of a relational equi-

join; it takes two streams (A, B) of tuples as input and

produces their equi-join A on B as output (AB). Fig-

ure 6.2 is Gamma’s PIM. It just uses the HJOIN interface

to specify the desired behavior.

Fig. 6.2 The PIM: Join.

Our derivation starts by refining the HJOIN interface

with its parallel map-reduce algorithm parallelhjoin

(Figure 6.3).

Fig. 6.3 Parallel Join graph.

Next, bloomfilterhjoin algorithm refines each of

the HJOIN interfaces of Figure 6.3 to produce Figure 6.4.

Flattening Figure 6.4, and refining each interface with

Fig. 6.4 Parallel Join graph, using Bloom filters.

its lone primitive yields Gamma’s PSM (Figure 6.5).

12 Rui C. Gonçalves et al.

Fig. 6.5 Optimized parallel implementation of Gamma.

6.3 Gamma – An Alternative Derivation

A second, more involved derivation of Figure 6.5 ex-

poses new rewrites. Historically, we discovered this

derivation first, and only years later recognized the

shorter derivation.

We start by applying the bloomfilterhjoin refine-

ment. Doing so, we obtain the graph depicted in Fig-

ure 6.6.

Fig. 6.6 Join graph using Bloom filters.

The next step is to parallelize the BLOOM, BFILTER,

and HJOIN boxes by refining each with their map-reduce

versions (Figure 6.7(a)).

A BLOOM box is parallelized by hash-splitting its in-

put stream A into substreams A1, A2, creating a Bloom

filter M1, M2 for each substream, coalescing A1, A2 back

into A, and merging bit maps M1, M2 into a single map

M. A BFILTER box is parallelized by hash-splitting its

input stream A into substreams A1, A2. Map M is de-

composed into submaps M1, M2 and substream Ai is fil-

tered by Mi. The reduced substreams A1, A2 output by

BFILTER boxes are coalesced into stream A. The same

hash function must be used by all algorithms.

This alternative derivation already requires two

additional refinements to map interfaces BLOOM and

BFILTER to their map-reduce algorithms. Still, this

graph is not yet the optimized Gamma PSM.

In this derivation, refinement is insufficient to pro-

duce Gamma’s PSM. The graph of Figure 6.7(a) has

three serialization bottlenecks which degrade perfor-

mance. Consider the MERGE of substreams A1, A2 (pro-

duced by BLOOM) into A, followed by a HSPLIT to re-

construct A1, A2. There is no need to materialize A: the

(MERGE, HSPLIT) pair can also be implemented by the

(a)

(b)

Fig. 6.8 Gamma optimizations.

identity map: Ai → Ai. The same applies for the (MERGE,

HSPLIT) pair for collapsing and reconstructing sub-

streams produced by BFILTER. The removal of (MERGE,

HSPLIT) pairs eliminates two serialization bottlenecks.

This optimization is encoded in the graph presented in

Figure 6.8(a).

The third bottleneck combines maps M1, M2 into M

and then decomposes M back into M1, M2. The (MMERGE,

MSPLIT) pair can also be implemented by an identity

map: Mi → Mi. This optimization removes the (MMERGE,

MSPLIT) boxes and reroutes the streams appropri-

ately.12 This optimization is encoded in the model pre-

sented in Figure 6.8(b).

Using the Find Optimization tool available in ReFlO,

the bottlenecks are identified, as depicted in Fig-

ure 6.7(b). After applying the identity optimizations,

we can refine the interfaces used with primitive imple-

12 There are many ways in which MMERGE and MSPLIT can be
realized. The simplest is this: M is a 2×k bitmap. The join key
of an A tuple is hashed twice: once to determine the row of M,
the second to determine the column within the selected row.
Thus, all tuples of substream Ai hash to row i of M. MMERGE

combines M1, M2 into M by boolean disjunction. For each i,
MSPLIT extracts row i from M and zeros out the rest of Mi.

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 13

(a)

(b)

Fig. 6.7 Parallelization of Join graph, and its bottlenecks.

mentations, to obtain the optimized Gamma graph, al-

ready presented in Figure 6.5.

6.4 An Interpretation Example – Costs Estimates

During the process of deriving a PSM, it is useful for

the developers to be able to estimate values of quality

attributes they are trying to improve. This is a typical

application for interpretations.

For databases, estimates for execution time are com-

puted by adding the execution cost of each interface or

primitive present in a graph. The cost of an interface13

or primitive is computed based on the size of the data
being processed. The DS interpretation takes estimates

of input data sizes and computes estimates of output

data sizes.

Size estimates are used to build a cost expression

representing the cost of executing interfaces and prim-

itives. We build a string containing a cost symbolic ex-

pression, as during design time we do not have concrete

values for properties needed to compute costs. Thus, we

associate a variable (string) to those properties, and we

use those strings to build the symbolic expression rep-

resenting the costs.

Figure 6.9 shows the code used to generate a cost

estimate for phjoin primitive. phjoin is executed by

reading each tuple of stream A and storing it in a

hash table (cHJoinAItem is a constant that represents

the cost of processing a tuple of stream A), and then

each tuple of stream B is read and joined with tuples

13 An interface cost is set to that of its most general primi-
tive implementation.

of A (cHJoinBItem is a constant that represents the

cost of processing a tuple of stream B). Thus, the cost

of phjoin is given by sizea ∗ cHJoinAItem + sizeb ∗
cHJoinBItem. As HJOIN can always be implemented by

phjoin, we can use the same cost expression for HJOIN.

The COST S interpretation is backward, as the costs of

an algorithm are computed from the costs of its inter-

nal boxes (ie we need to compute costs of internal boxes

first). So the costs are progressively sent to their par-

ent boxes, until they reach the outermost box, where

the costs of all boxes are aggregated, providing a cost

estimate for the entire graph. Figure 6.10 shows the

code used by interpretations of algorithm boxes that

simply add their costs to the aggregated costs stored

on their parent boxes.

public class phjoin extends AbstractInterpretation {
public void compute() {

String sizeA=(String)getInputProperty("A","Size");
String sizeB=(String)getInputProperty("B","Size");
String cost="("+sizeA+") * cHJoinAItem + ("

+sizeB+") * cHJoinBItem";
setBoxProperty("Cost",cost);
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Fig. 6.9 Interpretation that estimates phjoin cost.

14 Rui C. Gonçalves et al.

public class Algorithm extends AbstractInterpretation {
public void compute() {

String cost=(String) getBoxProperty("Cost");
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Fig. 6.10 Interpretation that processes costs for algorithm
boxes.

7 Perspective

To round out our presentation, we sketch a general pro-

cess on how to use ReFlO effectively and provide some

insights on ReFlO’s limitations.

7.1 A Process on How to Use ReFlO

ReFlO can be used for different purposes, namely to

reverse-engineer existing PnF applications (ie to de-

duce a sequence of transformations that were used in

a legacy application to map its PIM to its PSM) or to

build new optimized programs, starting from a PIM.

In either case, the process starts with a domain analy-

sis [51], where an expert catalogs the fundamental op-

erations of a domain with their implementations. The

domain expert also knows that certain compositions of

operations are inefficient; thus he needs to identify op-

timizations as well. It is also his job to provide evidence

(eg a proof) that each transformation is correct and to

specify the pre- and postconditions of each box.

This “minimal” model may be enhanced further. To

explore different implementations of a program (eg ef-

ficiency or availability), additional interpretations are

needed to estimate a program’s quality attributes.

This knowledge can then be used by developers (or

by the domain expert itself) to derive efficient pro-

grams. Typically, a developer starts with a PIM of a

target application. ReFlO can be used incrementally to

apply transformations and derive various PSMs, until

a PSM is found that meets desired constraints on qual-

ity attributes. The developer may also export a domain

model to an external tool to automatically search the

space of a given PIM for a desirable PSM [46].

Domain analysis and derivations are often con-

ducted in parallel. The domain model is usually built

while reverse engineering existing programs, ie domain

experts may be using ReFlO to derive programs and to

build the domain model at the same time.

Finally, we note that ReFlO was developed specif-

ically with pipe-and-filter software architectures in

mind. We believe that ReFlO should be useble in other

practical applications, such as dataflow and workflow

applications, as well as functional-based application de-

signs.

7.2 Limitations of ReFlO

We have used ReFlO to derive the designs of other

applications—crash fault-tolerant (CFT) servers [60]

and dense linear algebra algorithms [48].

We chose a PnF notation to model programs and

transformations that was influenced by the case-studies

we explored. Although in certain domains a program’s

structure easily fits this architecture style (eg stream-

ing applications [70], dataflow applications [1]), we are

aware that some domains may require more effort to

mine than others, and existing code may need to be

adapted in order to provide code implementations for

domain components. ReFlO seems best suited for ma-

ture and well-understood domains, although our use of

ReFlO to explore designs of CFT servers is an example

of a domain that hardly qualifies as mature. Further,

ReFlO is not limited to domains with stateless compu-

tations either. The CFT servers that we studied were

stateful [60].

The graphical notation (syntax) provided by ReFlO

is not sufficient to encode domain knowledge. Pre- and

postconditions are specified in Java; quality attribute

definitions and computations are also specified in Java.

Further, we found that many transformations are sim-

ple variations of each other; using templates substan-

tially reduces the effort to encode rule variants. This

combination of ideas and representations was sufficient

to derive optimized programs in the different domains

that we have studied.

It is possible that DSLs may simplify the task

of writing different (and standardized) interpretations,

rather than writing Java code. We leave this exploration

to future work.

ReFlO promotes correct by construction derivations.

Providing proofs of correctness for rewrite rules takes

effort. Nevertheless, (i) proving individual transforma-

tions correct is usually simpler than proving the entire

system correct; and (ii) proofs for transformations are

reusable, whereas the proof for an entire system is usu-

ally not. Moreover, experts are far better able to provide

proofs than developers who simply use the components

and rewrite rules that experts have defined. Although

having proof of correctness is important, ReFlO does not

require such proofs.

Finally, we are hardly the first to notice that imple-

mentations of an interface can be specialized for partic-

ular inputs and particular conditions [54]. This forced

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 15

Perry, and now us, to use PSP. It is worth observing

that violations of the LSP are documented in the widely

used JDK (eg TreeMap implementation of Map [2]).

8 Related Work

ReFlO is a tool to specify model transformations. Com-

mon tools/languages for model transformation, such as

ATL [3] or Epsilon [26], specify transformations us-

ing executable code. Our approach specifies transfor-

mations by providing examples, which has two advan-

tages.

First, it makes it easier for domain experts (the ones

with the knowledge about the valid domain transforma-

tions) to specify transformations [72,4,76,66,62]. Other

approaches have been proposed to address this chal-

lenge. Baar and Whittle [4] explain how a metamodel

(eg for PnF graphs) can be extended to also support

the specification of transformations over models. In this

way, a concrete syntax, similar to the syntax used to

define models, is used to define model transformations,

making those transformations easier to read and un-

derstand by humans. In ReFlO transformations are also

specified using a concrete syntax.

Model transformation by example (MTBE) [72,76]

proposes to (semi-)automatically derive transformation

rules based on set of key examples of mappings between

source and target models. The approach was improved

with the use of Inductive Logic Programming to de-

rive the rules [73]. The rules may later be manually

refined. Our rules provide examples in minimal con-

text, and unlike in MTBE, we do not need to relate

the objects of the source and target model (ports of in-

terfaces are implicitly related to the ports of their im-

plementations). Additionally, MTBE is more suited for

exogenous transformations, whereas we use endogenous

transformations [24,39,50].

More recently, a similar approach, model transfor-

mation by demonstration [66] was proposed, where users

show how source models are edited in order to be

mapped to the target models. A tool [65] captures the

user actions and derives the transformations conditions

and the operations needed to perform the transforma-

tions. When using ReFlO it is enough to provide the

original element and its possible replacements.

Graph grammars [61] also provide a declarative way

to define model/graph transformations using examples.

In particular, our rules are specified in a similar way

to productions in the double-pushout approach for hy-

pergraphs [38]. Agg [67] is probably the most similar

tool to ReFlO. It deals with graph rewrite rules, whereas

our transformations are better captured by hypergraph

rewrite rules, due to the role of ports in the transfor-

mations (that specify the gluing points in the transfor-

mation). Moreover, it is not clear whether these other

approaches would be able to capture pre- and post-

conditions, which are essential for correct PnF graph

derivation.

Another advantage is that ReFlO rewrites make

domain knowledge more accessible to non-experts, as

ReFlO encodes domain knowledge in a graphical and ab-

stract way, relating alternative ways of implementing a

particular behavior. Capturing algebraic identities is on

the base of algebraic specifications and term rewriting

systems. Relational query optimization [44,63] is one

of the most successful examples of application of these

ideas, where, as in ReFlO, the goal is to optimize pro-

grams. Program verification tools, such as CafeOBJ [20]

or Maude [14], are another common application. ReFlO

was developed to support DxT approach, where trans-

formations are specified as graph rewrites, instead of

term rewriting.

More generally, ReFlO provides a framework for

program transformation that allows developers to in-

teractively transform high-level program specifications

into optimized implementations. Spiral [57] and Am-

phion [45], are examples of projects with a similar goal,

ie to synthesize efficient implementations for high-level

specifications. Besides the differences in the way as they

model the domain knowledge, and the strategies used to

transform programs, the focus of these tools was on the

automation of the synthesis process, whereas ReFlO is a

tool for interactive development. Tools such as Spiral

or Amphion are useful when we have a complete model

of a domain, whereas ReFlO is a tool to be used both

by domain experts in the process of building those do-

main models, and later by other developers to optimize

their programs. ReFlO is able to export its models to

code that can be used with DxTer [47,46] a tool that,

like Spiral and Amphion, automates the search for

the optimized implementation.

Several tools for PnF modeling have been proposed,

such as LabVIEW [68], Simulink [64], Weaves [32], Frac-

tal [12], or StreamIt [69]. However, they focus on com-

ponent specification and construction of systems com-

posing those components. We realized that transforma-

tions (in particular optimizations) play an essential role

when building efficient architectures using components.

LabVIEW does support optimizations, but only when

mapping a LabVIEW model to an executable. Users

can not define refinements and optimizations, but Lab-

VIEW compiler technicians can. More than a tool for

the specification of PnF graphs, ReFlO provides the

ability for users to capture domain-specific graph trans-

formations and to apply them to PnF designs.

16 Rui C. Gonçalves et al.

The interpretation framework provided by ReFlO

offers a way to perform model simulation/animation,

which allows developers to predict properties of the sys-

tem being modeled without having to actually build

it. LabVIEW and Simulink are typical examples of

tools to simulate PnF architectures. Ptolemy II [25]

provides modeling and animation support for hetero-

geneous models.

Other tools exist for different types of models,

such as UML [15,21], or Colored Petri Nets [59]. Our

work has some similarities with Model-Driven Perfor-

mance Engineering (MDPE) [29]. However, we focus

on endogenous transformations, and how those trans-

formations improve architecture’s quality attributes,

not exogenous transformations, as it is common in

MDPE. Our solution for cost estimation can be com-

pared with the coupled model transformations proposed

by Becker [9]. However, the cost estimates (as well

as other interpretations) are transformed in parallel

with the PnF graph, not during M2T transformations.

Other solutions have proposed for component based

systems [41]. KLAPER [35] provides a language to au-

tomate the creation of performance models from com-

ponent models. Kounev [40] shows how Queueing Petri

Nets can be used to model systems, allowing prediction

of its performance characteristics. The Palladio Compo-

nent Model [10] provides a powerful metamodel to sup-

port performance prediction, adapted to the different

developer roles. We do not provide a specific framework

for cost/performance estimates, as the expressiveness of

ReFlO’s interpretations framework allow us to support

this capability.

ReFlO allows properties to be assigned to boxes.

Properties are similar to attributes in an attributed

graph [13]. Those properties are then used to specify

pre- and postconditions. Allowing the implementations

to have stronger preconditions, we may say that the

rewrite rules may have applicability predicates [13] or

attribute conditions [67], which specify a predicate over

the attributes of a graph when a match/morphism is

not enough to specify whether a transformation can

be applied. Pre- and postconditions were used in other

component systems, such as Inscape [54], with the

goal of validating component compositions. In our case,

the main purpose of pre- and postconditions is to de-

cide when transformations can be applied. Nevertheless,

they may also be used to validate component composi-

tions.

Abstract interpretations [16,52] define properties

about a program’s state and specify how instructions

affect those properties. The properties are correct, but

often imprecise. Still, they provide useful information

to allow compilers to perform certain transformations.

In ReFlO, postconditions play a similar role. They com-

pute properties about operation outputs based on prop-

erties of their inputs, and the properties may be used

to decide whether a transformation can be applied or

not. As for abstract interpretations, the properties com-

puted by postconditions have to describe output values

correctly. In contrast, properties used to compute costs,

for example, are often just estimates, and therefore may

not be correct, but in this case approximations are usu-

ally enough. The Broadway compiler [37] used the same

idea of propagating properties about values, to allow

the compiler to transform the program. The Broadway

compiler separated the compiler infrastructure from do-

main expertise, and like in ReFlO, the goal was to allow

users to specify domain-specific optimizations. Specify-

ing pre- and postconditions as properties that are prop-

agated is also not new. This was the approach used in

the Inscape environment [55,56], and later by Batory

and Geraci [6], and Feiler and Li [27]. Interpretations

provide alternative views of a PnF graph that are syn-

chronized as it is incrementally changed [58].

9 Conclusions

ReFlO was motivated by a lack of technology that would

help us understand legacy pipe-and-filter (PnF) appli-

cations. Unless PnF graphs are very simple, they are

spaghetti diagrams—difficult to understand, impossible

to know if they are correct, and without tool support,

difficult to analyze. Existing PnF tools, by in large, ap-

ply basic checks and convert a PnF graph into an exe-

cutable, but not much else.

MDE places such tools in context of a much larger
paradigm—the ability, indeed desire, to derive PnF ap-

plications using domain-specific rewrites that are im-

plicitly used by experts, capturing and systematizing

domain knowledge that would otherwise be lost or eas-

ily forgotten. Given a legacy PnF application, ReFlO

makes it possible to derive its design with rewrite rules

that are used by experts, and as we showed in this pa-

per, rules that can be proven correct. To the best of our

knowledge, this is the first derivation of Gamma that

has been proven correct.

In this paper, we presented the core ideas behind

ReFlO. We showed that the Perry Substitution Princi-

ple, rather than the Liskov Substitution Principle, is a

foundation for ReFlO graph rewrites. We explained how

a few basic operations (refine, flatten, abstract, opti-

mize, find optimization, and expand) could be used by

designers to derive PnF designs. Further, ReFlO is itself

an extensible framework in which different interpreta-

tions of a PnF graph (which arise in checking pre- and

postconditions, or cost evaluations) can be both added

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 17

and composed as needed. Further, we illustrated a tech-

nique that we have used to populate ReFlO libraries

with domain knowledge—ie different derivations of a

design utilize different fundamental rewrites of a do-

main.

We believe ReFlO is a valuable step toward inter-

active design tools that aid domain-specific program

development and knowledge collection.

Availability. ReFlO is available online at http://

www.cs.utexas.edu/users/schwartz/DxT/reflo/.

All PnF figures in this paper are screenshots from

ReFlO. ReFlO is a Eclipse [22] plugin. The modeling

languages were specified using Ecore [23], and the

model editors were implemented using the GEF [33]

and GMF [34]. The model transformations and model

validation were implemented using the Epsilon [26]

family of languages.

Acknowledgements We gratefully acknowledge helpful
feedback from B. Marker (Texas), T. Riché (National In-
struments), R. Silva (Minho), and the anonymous reviewers.
This work was supported by NSF grants CCF 0724979 and
OCI-1148125. Rui Gonçalves and João Sobral are funded
by ERDF – European Regional Development Fund through
the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT
– Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within projects
FCOMP-01-0124-FEDER-010152 and FCOMP-01-0124-
FEDER-011413. Rui Gonçalves is additionally funded by
FCT grant SFRH/BD/47800/2008.

References

1. Dataflow application areas. http://www.ni.com/labview/

applications/, 2013.
2. TreeMap (Java Platform SE 7). http://docs.oracle.com/

javase/7/docs/api/java/util/TreeMap.html, 2013.
3. ATL - a model transformation technology. http://www.

eclipse.org/atl/.
4. Thomas Baar and Jon Whittle. On the usage of concrete

syntax in model transformation rules. In PSI ’06: Pro-

ceedings of the 6th international Andrei Ershov memorial

conference on Perspectives of systems informatics, pages
84–97, 2006.

5. C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran,
S. Padmanabhan, G. P. Copeland, and W. G. Wilson.
DB2 parallel edition. IBM Systems Journal, 34(2):292–
322, 1995.

6. Don Batory and Bart J. Geraci. Composition validation
and subjectivity in genvoca generators. IEEE Transac-

tions on Software Engineering, 23(2):67–82, 1997.
7. Don Batory and Bryan Marker. Correctness proofs of the

gamma database machine architecture. Technical Report
TR-11-17, The University of Texas at Austin, Depart-
ment of Computer Science, 2011.

8. Don Batory and Sean William O’Malley. The design
and implementation of hierarchical software systems with
reusable components. ACM Transactions on Software En-

gineering and Methodology (TOSEM), 1(4):355–398, 1992.

9. Steffen Becker. Coupled model transformations. In
WOSP ’08: Proceedings of the 7th international workshop

on Software and performance, pages 103–114, 2008.
10. Steffen Becker, Heiko Koziolek, and Ralf Reussner. The

palladio component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3–22,
2009.

11. Burton H. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

12. E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal
Component Model. http://fractal.ow2.org, 2004.

13. Horst Bunke. Attributed programmed graph grammars
and their application to schematic diagram interpreta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4(6):574–582, 1982.

14. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and J. F. Quesada. Maude: specification
and programming in rewriting logic. Theoretical Computer

Science, 285(2):187–243, 2002.
15. Benoit Combemale, Xavier Crégut, Jean-Patrice Gia-

cometti, Pierre Michel, and Marc Pantel. Introducing
simulation and model animation in the MDE topcased
toolkit. In ERTS ’08: 4th European Congress EMBEDDED

REAL TIME SOFTWARE, 2008.
16. Patrick Cousot and Radhia Cousot. Abstract interpre-

tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages
238–252, 1977.

17. Ivica Crnkovic. Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., Norwood, MA, USA,
2002.

18. Dinesh Das. Making Database Optimizers More Extensible.
PhD thesis, The University of Texas at Austin, 1995.

19. D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen. The gamma
database machine project. IEEE Transactions on Knowl-
edge and Data Engineering, 2(1):44–62, 1990.

20. Razvan Diaconescu, Kokichi Futatsugi, and Shusaku
Iida. Component-based algebraic specification and veri-
fication in CafeOBJ. In FM ’99: Proceedings of the Wold

Congress on Formal Methods in the Development of Com-
puting Systems-Volume II, pages 1644–1663, 1999.

21. Dolev Dotan and Andrei Kirshin. Debugging and test-
ing behavioral UML models. In OOPSLA ’07: Companion

to the 22nd ACM SIGPLAN conference on Object-oriented

programming systems and applications companion, pages
838–839, 2007.

22. Eclipse. http://eclipse.org.
23. Eclipse Modeling Framework. http://www.eclipse.org/

modeling/emf/.
24. Alexander Egyed, Nikunj R. Mehta, and Nenad Med-

vidovic. Software connectors and refinement in family
architectures. In IW-SAPF-3: Proceedings of the Inter-

national Workshop on Software Architectures for Product

Families, pages 96–106, 2000.
25. Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xi-

aojun Liu, Jozsef Ludvig, Sonia Sachs, Yuhong Xiong,
and Stephen Neuendorffer. Taming heterogeneity - the
ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, 2003.

26. Epsilon. http://www.eclipse.org/gmt/epsilon/.
27. Peter Feiler and Jun Li. Consistency in dynamic recon-

figuration. In ICCDS ’98: Proceedings of the Fourth Inter-

national Conference on Configurable Distributed Systems,
pages 189–196, 1998.

http://www.cs.utexas.edu/users/schwartz/DxT/reflo/
http://www.cs.utexas.edu/users/schwartz/DxT/reflo/
http://www.ni.com/labview/applications/
http://www.ni.com/labview/applications/
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
http://fractal.ow2.org
http://eclipse.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmt/epsilon/

18 Rui C. Gonçalves et al.

28. David S. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. John Wiley & Sons, Inc.,
2003.

29. Mathias Fritzsche and Jendrik Johannes. Putting perfor-
mance engineering into model-driven engineering: Model-
driven performance engineering. In Models in Software

Engineering, pages 164–175. Springer-Verlag, 2008.
30. David Garlan and Mary Shaw. An introduction to soft-

ware architecture. Technical Report CMU-CS-94-166,
Carnegie Mellon University, 1994.

31. Rui C. Gonçalves. Parallel Programming by Transforma-
tion. PhD thesis, Departamento de Informática, Univer-
sidade do Minho, (To appear).

32. Michael M. Gorlick and Rami R. Razouk. Using weaves
for software construction and analysis. In ICSE ’91: Pro-
ceedings of the 13th international conference on Software

engineering, pages 23–34, 1991.
33. Graphical Editing Framework. http://www.eclipse.org/

gef/.
34. Eclipse graphical modeling framework. http://www.

eclipse.org/gmf/.
35. Vincenzo Grassi, Raffaela Mirandola, and Antonino Sa-

betta. From design to analysis models: a kernel language
for performance and reliability analysis of component-
based systems. In WOSP ’05: Proceedings of the 5th in-
ternational workshop on Software and performance, pages
25–36, 2005.

36. C. Green, D. Luckham, R. Balzer, T. Cheatham, and
C. Rich. Report on a knowledge-based software assistant.
Technical report, Kestrel Institute, 1983.

37. Samuel Z. Guyer and Calvin Lin. Broadway: A compiler
for exploiting the domain-specific semantics of software
libraries. Proceedings of the IEEE, 93(2):342–357, 2005.

38. Annegret Habel. Hyperedge Replacement: Grammars and

Languages. Springer-Verlag New York, Inc., 1992.
39. Reiko Heckel and Sebastian Thöne. Behavior-preserving

refinement relations between dynamic software architec-
tures. In WADT’ 04: Proceedings of the 17th International

Workshop on Algebraic Development Techniques, pages 1–
27, 2004.

40. Samuel Kounev. Performance modeling and evaluation
of distributed component-based systems using queueing
petri nets. IEEE Transactions on Software Engineering,
32(7):486–502, 2006.

41. Heiko Koziolek. Performance evaluation of component-
based software systems: A survey. Performance Evalua-
tion, 67(8):634–658, 2010.

42. Barbara Liskov and Jeannette M. Wing. A new definition
of the subtype relation. In ECOOP ’93: Proceedings of the
7th European Conference on Object-Oriented Programming,
pages 118–141, 1993.

43. Barbara H. Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM Transactions on Programming
Languages and Systems, 16(6):1811–1841, 1994.

44. Guy M. Lohman. Grammar-like functional rules for rep-
resenting query optimization alternatives. In SIGMOD
’88: Proceedings of the 1988 ACM SIGMOD international

conference on Management of data, pages 18–27, 1988.
45. Michael R. Lowry, Andrew Philpot, Thomas Pressburger,

and Ian Underwood. Amphion: Automatic programming
for scientific subroutine libraries. In ISMIS ’94: Proceed-
ings of the 8th International Symposium on Methodologies
for Intelligent Systems, pages 326–335, 1994.

46. Bryan Marker, Don Batory, and C.T. Shepherd. DxTer:
A program synthesizer for dense linear algebra. Technical
report, The University of Texas at Austin, Department
of Computer Science, 2012.

47. Bryan Marker, Jack Poulson, Don Batory, and Robert
van de Geijn. Designing linear algebra algorithms by
transformation: Mechanizing the expert developer. In
iWAPT ’12: International Workshop on Automatic Perfor-
mance Tuning, 2012.

48. Bryan Marker, Andy Terrel, Jack Poulson, Don Batory,
and Robert van de Geijn. Mechanizing the expert dense
linear algebra developer. In PPoPP ’12: Proceedings of the

17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, pages 289–290, 2012.

49. Nenad Medvidovic, David S. Rosenblum, and Richard N.
Taylor. A language and environment for architecture-
based software development and evolution. In ICSE ’99:

Proceedings of the 21st international conference on Software
engineering, pages 44–53, 1999.

50. Tom Mens and Pieter Van Gorp. A taxonomy of model
transformation. Electronic Notes in Theoretical Computer

Science, 152:125–142, 2006.
51. James M. Neighbors. Software Construction Using Compo-

nents. PhD thesis, Department of Information and Com-
puter Science, University of California, Irvine, 1980.

52. Flemming Nielson, Hanne R. Nielson, and Chris Hankin.
Principles of Program Analysis. Springer-Verlag, 1999.

53. Richard F. Paige, Dimitrios S. Kolovos, and Fiona
A. C. Polack. Refinement via consistency checking in
MDA. Electronic Notes in Theoretical Computer Science,
137(2):151–161, 2005.

54. Dewayne E. Perry. Version control in the inscape envi-
ronment. In ICSE ’87: Proceedings of the 9th international
conference on Software Engineering, pages 142–149, 1987.

55. Dewayne E. Perry. The inscape environment. In ICSE
’89: Proceedings of the 11th international conference on

Software engineering, pages 2–11. ACM, 1989.
56. Dewayne E. Perry. The logic of propagation in the in-

scape environment. ACM SIGSOFT Software Engineering
Notes, 14(8):114–121, 1989.

57. Markus Püschel, José M. F. Moura, Bryan Singer,
Jianxin Xiong, Jeremy Johnson, David Padua, Manuela
Veloso, and Robert W. Johnson. Spiral: A generator
for platform-adapted libraries of signal processing algo-
rithms. International Journal of High Performance Com-

puting Applications, 18(1):21–45, 2004.
58. István Ráth, Gergely Varró, and Dániel Varró. Change-

driven model transformations. In MODELS ’09: Proceed-

ings of the 12th International Conference on Model Driven
Engineering Languages and Systems, pages 342–356, 2009.

59. Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen,
Mads Laursen, Jacob Frank Qvortrup, Martin Stig Stiss-
ing, Michael Westergaard, Søren Christensen, and Kurt
Jensen. CPN tools for editing, simulating, and analysing
coloured petri nets. In ICATPN ’03: Proceedings of the

24th international conference on Applications and theory of
Petri nets, pages 450–462, 2003.

60. Taylor. L. Riché, Rui C. Gonçalves, Bryan Marker, and
Don Batory. Pushouts in software architecture design.
In GPCE ’12: Proceedings of the 11th ACM international

conference on Generative programming and component en-
gineering, pages 84–92, 2012.

61. Grzegorz Rozenberg. Handbook of Graph Grammars and
Computing by Graph Transformation, Vol I: Foundations.
World Scientific, 1997.

62. Hajer Saada, Xavier Dolquesa, Marianne Huchard,
Clémentine Nebut, and Houari Sahraoui. Generation of
operational transformation rules from examples of model
transformations. In MODELS ’12: Proceedings of the 15th

International Conference on Model Driven Engineering Lan-

guages and Systems, pages 546–561, 2012.

http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/

ReFlO: An Interactive Tool for Pipe-And-Filter Domain Specification and Program Generation 19

63. P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In SIGMOD

’79: Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34, 1979.

64. Simulink - Simulation and Model-Based Design. http:

//www.mathworks.com/products/simulink/.
65. Yu Sun, Jeff Gray, and Jules White. MT-scribe: an end-

user approach to automate software model evolution. In
ICSE ’11: Proceedings of the 33rd International Conference

on Software Engineering, pages 980–982, 20011.
66. Yu Sun, Jules White, and Jeff Gray. Model transforma-

tion by demonstration. In MODELS ’09: Proceedings of the

12th International Conference on Model Driven Engineering

Languages and Systems, pages 712–726, 2009.
67. Gabriele Taentzer. AGG: A graph transformation en-

vironment for modeling and validation of software. In
Applications of Graph Transformations with Industrial Rel-
evance, volume 3062, pages 446–453. Springer Berlin /
Heidelberg, 2004.

68. The LabVIEW Environment. http://www.ni.com/

labview/.
69. William Thies. Language and Compiler Support for Stream

Programs. PhD thesis, MIT, 2008.
70. William Thies, Michal Karczmarek, and Saman P. Ama-

rasinghe. StreamIt: A language for streaming applica-
tions. In CC ’02: Proceedings of the 11th International Con-
ference on Compiler Construction, pages 179–196, 2002.

71. Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano
Ceri, and Jean Bézivin. On the use of higher-order model
transformations. In ECMDA-FA ’09: Proceedings of the

5th European Conference on Model Driven Architecture -

Foundations and Applications, pages 18–33, 2009.
72. Dániel Varró. Model transformation by example. In

MODELS ’06: Proceedings of the 11th international confer-

ence on Model Driven Engineering Languages and Systems,
pages 410–424, 2006.

73. Dániel Varró and Zoltán Balogh. Automating model
transformation by example using inductive logic pro-
gramming. In SAC ’07: Proceedings of the 2007 ACM sym-

posium on Applied computing, pages 978–984, 2007.
74. Wikipedia. Component-based software engineer-

ing. http://en.wikipedia.org/wiki/Component-based_

software_engineering, 2013.
75. Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner

Retschitzegger, Johannes Schönböck, Werner Schwinger,
Dimitris Kolovos, Richard Paige, Marius Lauder, Andy
Schürr, and Dennis Wagelaar. Surveying rule inheritance
in model-to-model transformation languages. Journal of
Object Technology, 11(2):3:1–46, 2012.

76. Manuel Wimmer, Michael Strommer, Horst Kargl, and
Gerhard Kramler. Towards model transformation genera-
tion by-example. In HICSS ’07: Proceedings of the 40th An-
nual Hawaii International Conference on System Sciences,
2007.

77. Niklaus Wirth. Program development by stepwise refine-
ment. Communications of the ACM, 14(4):221–227, 1971.

A Cascading Joins

Figure 6.5 is not the last word on Gamma’s graph. Optimiza-
tions identical to those presented in Section 3.2.4 are used to
optimize the processing of cascading joins, where the output
of one join becomes the input of another (see Figure A.1).

Fig. A.1 CascadeJoin graph.

Applying the refinements parallelhjoin and bloomfilter-
hjoin, as described in Section 6.2, we get the graph depicted
in Figure A.2(a). This example further shows the importance
of deriving the PnF graphs, instead of just using pre-built
optimized implementations for the operations present in the
initial PIM (in this case, HJOIN operations). The use of the
optimized implementations for HJOIN would have resulted in
an implementation equivalent to the one depicted in Fig-
ure A.2(a). However, when we compose two (or more) in-
stances of HJOIN, new opportunities for optimization arise.
We have again a serialization bottleneck, formed by a com-
position of boxes MERGE (that merges the output streams of
the first group of HJOINs) and HSPLIT (that hash-splits the
stream again).

Here again, refinement is insufficient to derive Gamma’s

graph; encapsulation boundaries must be broken to eliminate se-
rialization bottlenecks. Unlike the bottlenecks in the previous
section, cascading joins use different keys to hash the tuples,
so the partitioning of the stream before its merge is different
than the partitioning after the hash-split. Therefore, we can-
not use algorithm mhs identity to optimize this subgraph.14

Instead, we use a rewrite that removes these bottlenecks by
swapping (MERGE, HSPLIT) pairs (algorithm mhs hsplitmerge).
Each input stream is hash-split into two substreams that are
sent to the each MERGE box. The substreams with the same
hash values are then merged.

14 We prevent algorithm mhs identity from being chosen us-
ing preconditions.

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/
http://www.ni.com/labview/
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Component-based_software_engineering

20 Rui C. Gonçalves et al.

(a)

(b)

Fig. A.2 Rotation of MERGE and HSPLIT.

	Introduction
	Foundational Concepts: Part I
	Domain Model Specification
	Interactive Derivation of PSMs from a PIM
	Foundational Concepts: Part II
	Case Study: Gamma Hash Join
	Perspective
	Related Work
	Conclusions
	Cascading Joins

