
Modular and Non-Invasive Distributed Memory Parallelization

Rui Carlos Gonçalves João Luı́s Sobral
Departamento de Informática, Universidade do Minho

{rgoncalves,jls}@di.uminho.pt

Abstract
This paper presents an aspect-oriented library to support par-
allelization of Java applications for distributed memory en-
vironments, using a message-passing approach. The library
was implemented using AspectJ language, and aims to pro-
vide a set of mechanisms to make easier to parallelize ap-
plications, as well as to solve well known problems of par-
allelization, such as lack of modularity and reusability. We
compare the advantages of this method over the traditional
approach, and we discuss differences to recent approaches
that address the same problem. Results show benefits over
other approaches, and, in most of cases, a competitive per-
formance.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming

General Terms Design, Languages, Performance

1. Introduction
Over the last decades, the power delivered by computers has
been increasing. However, in recent years, this increase usu-
ally means more cores, instead of higher clock rates, as in
the past. This new reality moves the tasks of improve perfor-
mance of applications from chip manufacturers to software
developers. To get advantage of these machines, applications
must be prepared to them, and this is a complex task, usually
reserved for experts in parallel computing.

Current approaches to parallelize applications present
several problems. The ability to deal with legacy code is
essential, as scientist will be resilient to embrace the par-
allelization of their applications if that requires to rewrite
thousands of lines of code. Moreover, in new applications,
parallelism related code should not invade basic applica-
tion code (we refer to this code as domain specific code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MISS’12, March 27, 2012, Potsdam, Germany.
Copyright c� 2012 ACM 978-1-4503-1217-2/12/03. . . $10.00

(DSC)). Parallelization is a crosscutting concern, as base ap-
plication code is mixed with parallelism, and this concern
is spread among several modules (tangling and scattering in
aspect-oriented terminology) [4, 6, 12]. This results in lack
of modularity, and consequently it is more difficult to de-
velop and maintain code, as this does not allow independent
development, and there are less opportunities to reuse code.

A particularly hard problem is the development and reuse
of data partitioning strategies for distributed memory sys-
tems. Effectively exploiting parallelism requires the parti-
tioning of application data into chunks that can be processed
in parallel, and managing dependencies among data. Such
code is usually a considerable part of the total distributed
memory code and it is very prone to errors. Some existing
systems provide a set of fixed data partitioning strategies,
but that results in invasive source code changes, and they are
hard to adapt for a specific case.

Aspect-Oriented Programming (AOP) [7] has been suc-
cessfully applied to improve modularity in problems like
logging [8], as well as in several well known design pat-
terns [5]. In this paper we explore AspectJ [8] to provide
reusable and customizable implementations of code recur-
rently needed in parallel applications for distributed memory
architectures. The library includes a set of classes that pro-
vides common strategies to partition regular data structures.

2. The Library’s Design
The library implements features that are often needed when
parallelizing an application for distributed memory. We aim
to improve productivity and make parallelization process
easier and feasible by non experts in parallel programming.
The library was developed with the following major goals:

Modularity and Reusability. The different concerns
should be implemented in different modules, and should
not invade DSC. This enables code reutilization, and thus
reduces development times and improves productivity, re-
duces bugs (by reusing code already tested) and reduces
maintenance times (by localizing code at a single place).

Incrementality. When the same base algorithm can be
used in sequential and parallel versions, developers should
be able to start with sequential code, and incrementally add
parallelization code, without requiring significant changes to
previous code. We may need several versions of the appli-

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 2012 workshop on Modularity in Systems Software, {VOL##, ISS##, (DATE)} http://doi.acm.org/10.1145/{nnnnnn.nnnnnn}

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Proceedings of the 2012 workshop on Modularity in Systems Software, http://doi.acm.org/10.1145/2162024.2162034

cation to run in different environments (sequential version,
multithreaded version, distributed memory version, or even
hybrid versions, that mix some of previous). Although the
parallel version is usually able to run as a sequential appli-
cation, parallel code adds an overhead, and thus, versions
with only needed features enabled are useful. If all versions
share the same base code, and are obtained adding only new
features, it is easier to maintain them.

Pluggability. The parallelization should be easily remov-
able. As we mentioned in the previous point, we may need to
maintain several versions of an application. If parallelization
features are provided by pluggable modules, we can gener-
ate different versions just enabling the needed modules.

Extensibility and Flexibility. The developers should be
able to adapt the operators provided to fit their needs, as well
as add new operators. It is almost impossible to develop a
tool that fits all applications, thus developers may need to
add new operators, or adapt existing ones.

Performance. The library should provide a performance
similar to traditional approaches. Although our goal is not
improve applications’ performance, the library should pro-
vide a competitive performance.

To accomplish these goals, we developed a library of ab-
stract aspects, with abstract pointcuts that allow us to change
the behavior of an application. We use lexical pointcuts, in-
stead of annotation-based, as the later would require changes
in the DSC to add the parallelization, and they can not pro-
vide support for including parallelization specific code (e.g.,
to support a customized data partition strategy).

It is assumed that applications will run in several pro-
cesses, that each of them will have an id, and that process
with id 0 will be the master process (and the others are
slaves). The library is well-suited to single program multiple
data (SPMD) applications, where all processes run the same
program, but each process deals only with its own data.

2.1 Operations Provided
2.1.1 Data Partition
There are two basic data partition operations. Scatter takes
an array stored on master process, divides the array accord-
ing to a specific partition strategy, and sends parts of the
array to other processes. Gather does the opposite, i.e., the
master process receives data from other processes, and con-
catenates it in a single array. We provide two variants of the
pointcut, to perform the operation before or after a join point.

Applications may have different needs concerning the in-
dexes of data in the arrays when they are distributed. In some
applications the position of data is not relevant. However,
there are applications where indexes of data are important,
as computation depends on them. We refer to these as lo-
cal and global array indexes. Therefore, in the former, when
sending data to slave processes, we fill arrays continuously,
starting from position 0. In the later we keep the original data
indexes, possibly creating holes in the array.

We support both local and global array indexes. The for-
mer is implemented in aspect DataDistributionPart and
the latter in aspect DataDistributuion. When using lo-
cal array indexes, we can have to hold both the complete
array and an additional array to keep only its part of the ar-
ray, with a local view. DataDistributionPart aspect pro-
vide three additional pointcuts, to specify when to change to
global/local view, or when to switch view.

2.1.2 Data Reduction
A data reduction operation takes one array of data per pro-
cess, and, for each array index, applies a function that merges
values of that index from all arrays into one. We provide two
types of reduction operations: one that collects the result of
the reduction only on master process, and other that sends
the result to all processes. Again, there are two versions of
each, to specify whether operation should be performed be-
fore or after the join point. These operations are provided by
Reduce aspect.

2.1.3 Execution Restriction
In SPMD applications, all processes execute the same pro-
gram, but each one with local data. When we partitioned
data, we may need to keep original indexes, leading to arrays
where only some positions are filled. Thus, we may need to
restrict execution of a method only to indexes of data stored
locally.

We support this functionality in ExecutionControl as-
pect by providing advices that restrict execution of a method
to processes with specific ids, or to processes where some
predicate is met.

When a method that returns a value is executed only
at one process, the returned value may be needed at all
processes. To deal with these situations, we provide variants
of this operator that broadcast the value returned by one
process to others.

2.2 Data Partition Strategies
When parallelizing an application using a SPMD approach,
we have to divide data among processes. In most of cases we
have to divide arrays (or similar data structures), and there
are some recurring strategies to partition arrays.

We provide classes that implement two common partition
strategies: block and cyclic. In the former, we allocate a con-
tiguous block to each process, all blocks with a similar size
(it is implemented by class Block). In the latter, we allocate
one position to each process in a cyclic way (it is imple-
mented by class Cycle). We can easily extend these classes
to provide slightly different variants of provided partitions
(as we did do in one of the case studies).

We provide an abstract class with an API that provides
information about how an array is partitioned. The API has
methods to provide the start and the end index of each
block, the size of each block, as well as the sum of sizes
of all blocks allocated to the same process, and the node that

holds a specific block or array index. There are also some
methods that allow to iterate over blocks allocated to the
same process.

2.3 Implementation Challenges
The most complex challenge that we have to deal with
was context information. We need to know which array
and which partition strategy to use in a scatter operation,
or which array and which operation to use in a reduction
operation, for example.

AspectJ allows specification of context information in
pointcuts, that is available to be used in the advice. How-
ever, it presents some limitations in this point. For example,
in an object oriented (OO) application, it is usual to have
data that is needed by a method stored in the object’s fields.
In AspectJ, we can specify the object as context information,
but we can not specify a field of the object. As we can spec-
ify methods’ parameters, we could overcome this limitation
passing the array as a parameter, however, in several situa-
tions, this would force significant changes in code structure,
with a negative impact in code quality. Moreover, partitions
or reduction operations usually can not be derived from con-
text information.

To solve these issues, concrete aspects, besides extending
the abstract aspect and defining pointcuts to specify where
we want to use an operator, also have to implement some
abstract methods. This implies to use different aspects to
apply an operator with different parameters.

Another challenge was the specification of points where
we want to execute an operator. AspectJ provides a wide
range of join points, however it was not enough for our
needs. Sometimes we needed more fine grained join points,
to allow to intervene in loops, for example. Therefore, cur-
rently to use this library developers may have to refactor the
code. Nevertheless, these refactorings are mainly extractions
of code blocks to new methods, a tasks that can be done al-
most automatically by IDEs.

3. Example of Use
To develop and test this library, we studied JGF benchmarks
[1]. This is an well known set of benchmarks, that had
already been used in previous works [2, 4, 6, 13]. It provides
sequential and parallel versions (Java threads, and message
passing, mpiJava [11] based) of applications, giving us a
comparison base for our work.

In this section we show how the library presented was
used to parallelize the JGF Series benchmark. We only men-
tion key details of the implementation. The complete source
code, as well as the parallelization of the other JGF bench-
marks and the library’s code, is available at http://alfa.
di.uminho.pt/

~

rgoncalves/aj-mpi/.
The JGF Series application computes the firsts n Fourier

coefficients of the function f(x) = (x + 1)x in the interval
[0, 2]. Figure 1 shows the most relevant parts of the method.

1 class SeriesTest {
2 double[][] TestArray;
3 void buildTestData() {
4 TestArray=new double[2][array_rows];
5 }
6 void Do() {
7 //...
8 coef0();
9 //...

10 for(int i=1; i<array_rows; i++) {
11 coefs(omega, i);
12 }
13 }
14 //...
15 }

Figure 1. JGF Series benchmarck.

1 aspect DataDistributionSeries extends DataDistribution {
2 protected static double[][] array;
3 protected static Partition partition;
4 after(SeriesTest obj):
5 execution(void SeriesTest.buildTestData()) && target(obj) {
6 array=obj.TestArray;
7 partition=new Block(obj.TestArray[0].length,Main.getNParts());
8 }
9 protected pointcut gatherAfter22():execution(* SeriesTest.Do());

10 protected Partition getPartition() { return partition; }
11 protected Object getArray() { return array; }
12 }

Figure 2. Data distribution aspect for Series benchmark.

The method has a loop that performs independent computa-
tions on each coefficient (line 11) and stores the results in an
array (TestArray).

To parallelize the application, we divide the array using
a block partition and we only call the method coefs in
the process that holds the corresponding array position. At
the end of method Do, we gather all the data on the master
process.

Figure 2 shows the aspect that specifies the pointcut af-
ter which the gather operation will be executed (line 9). It
also shows an advice where we specify the partition and the
array that stores the results (lines 4-8). This is done after
the method that initializes the data, and the information is
later used by the methods that provide the context informa-
tion to the gather operation (getPartition (line 10) and
getArray (line 11)).

Figure 3 shows the aspect that restricts the execution of
methods coefs and coef0 to the process that holds the val-
ues. We need two aspects because we have two different con-
ditions. The aspect ExecutionControlSeriesMaster ex-
tends the aspect ExecutionControlMaster (an extension
of ExecutionControl aspect, that already specifies the re-
striction condition as the process’s id be equal to 0). The
method getId (line 12) returns the id of the process that
contains index i of the partitioned array.

4. Discussion
To evaluate our approach, we implemented all the JGF MPI
benchmarks. We compare the versions developed using our
approach with JGF MPI versions. Table 1 summarizes our
conclusions.

1 public aspect ExecutionControlSeries {
2 public static aspect ExecutionControlSeriesMaster
3 extends ExecutionControlMaster {
4 protected pointcut condExeVoid():
5 call(private void SeriesTest.coef0();
6 }
7 public static aspect ExecutionControlId
8 extends ExecutionControl {
9 protected pointcut condExeIdVoidArg(int i):

10 call(private void SeriesTest.coefs(double,int))
11 && args(..,i) && within(jgf.section2.series.*);
12 protected int getId(int i) {
13 return DataDistributionSeries.aspectOf().
14 getPartition().getNodePosition(i);
15 }
16 }
17 }

Figure 3. Execution restriction aspect for Series bench-
mark.

JGF Lib
Modular / Reusable no yes
Incremental no yes
Pluggable no yes
Extensible / Flexible no (yes) yes

Table 1. Comparison of traditional (JGF) with our (Lib)
approach.

Regarding modularity and reusability, as we already men-
tioned, the traditional approach is not a good solution, be-
cause it mixes DSC with parallelization code. On the other
hand, our approach was able to separate several paralleliza-
tion concerns from the DSC. The data partition and the con-
trol flow (execution restriction) related code are in different
aspects. Thus, it is easier to reuse the different features in
different applications.

Moreover, the strategy to partition data is also specified
in a separated module. This makes easier to change the
partition strategy, which could be useful to test and choose
the best strategy for a specific application, or, when the best
strategy depends on the target platform, to provide versions
using different strategies.

Concerning incrementality, our versions were developed
using the sequential code provided by JGF. In some cases,
we needed to refactor code, mainly to expose join points
(e.g., extract a block of code to a new method) or context
information (e.g., move a variable to an object field). Nev-
ertheless, usually these refactorings neither deteriorate the
quality of code, nor result in significant changes in the struc-
ture of the original code. A more detailed discussion on the
types of refactorings needed can be found in [4]. The only
exception was the SOR benchmark, that requires a different
algorithm to allow efficient parallelization.

Although we only address distributed memory environ-
ments, we could use our library together with another li-
brary that uses a similar approach to provide shared memory
parallelism [3]. Therefore, we could start with a sequential
version, and incrementally develop a multithreaded version,
a distributed memory version, and hybrid version, allowing
the developer to adapt the application to the hardware.

Application 4*JGF 4*Lib 16*JGF 16*Lib
CryptC 3,54 3,61 7,80 8,01
SeriesC 3,11 3,13 12,26 12,27
SparseMatmultC 2,11 2,00 6,85 6,48
LUFactC 2,22 1,83 2,85 0,20
SORC 1,53 1,71 2,93 2,77
MDB 3,78 3,98 9,94 9,02
RayTracerB 3,82 3,87 14,13 14,33

Table 2. Speedups of JGF and our (Lib) versions.

With the traditional approach, as parallel code is mixed
with DSC, we cannot unplug the parallelization. Therefore,
developers have to maintain different versions of code. With
our approach, versions are obtained enabling/disabling as-
pects.

Our library showed to be extensible and flexible enough
to parallelize all JGF benchmarks. We were able to add new
partition strategies, based on the existing ones, as well as
provide specialized versions of the operators that increased
code reuse (e.g., ExecutionControlMaster, where we al-
ready have defined that only the master process executes the
method, thus avoiding the need to define a method each time
we extend this aspect). Although it was not necessary, we
could have added new operators. When the operators cannot
be used, when we need features specific of one application,
or when the library operators do not provide enough perfor-
mance, we are able to develop customized aspects, that can
be used together with the library operators.

Furthermore, the aspects act mainly as glue, specifying
when and how an operator shall be applied. The implementa-
tion of the operators is in a separated class that implements a
specific API. We provide classes implementing that API, but
developers can use their own classes, with different strate-
gies to implement the operators, or using other technologies
than MPI.

Performance. To evaluate performance, we compared
the speedup of the versions developed using our approach
and the MPI version provided by JGF. Table 2 presents the
speedups relative to the sequential versions, when running
the applications with 4 and 16 processes. For each applica-
tion, we collected the average of four execution times. It was
used a cluster of 4 bi-Xeon 5130 machines (a total of 16
cores, 4 per machine), Myrinet 10 Gbps network, with JDK
1.5 3, mpiJava 1.2.5, and MPICH 1.2.7.

We do not provide results for Monte Carlo benchmark,
as in all tries to run the application (both our and JGF ver-
sion), it aborted due to MPI errors. The results show that
our approach was able to provide a similar performance to
the traditional approach in most of the JGF benchmarks (the
only exception was the LUFact benchmark, where with our
approach we are not able to make a code optimization that
results in the need of an additional communication opera-
tion).

5. Related Work
Several works have addressed the problems that parallel
programming faces. We focus on approaches that used AOP.

Harbulot and Gurd were the firsts to explore the use
AspectJ to separate concerns in parallel applications [6].
Later, other works explored AspectJ [3, 10, 12, 14], however,
the first only addresses shared memory environments, and
the others present flexibility limitations, as they require the
code to be developed according to some predefined rules
(e.g., class have to implement some interface), thus they can
hardly deal with legacy code and force developers to think
in parallelism when they are developing sequential DSC.

Other works have used aspects in a different way: instead
of using them directly, they provide a domain specific lan-
guage to generate AspectJ code [4, 13]. This approach has
the advantage of hiding AOP technology from developer,
while eliminating composition problems of AspectJ [9]. But
it also has disadvantages. The first approach presents prob-
lems with context information, which forces the data needed
by operators to be part of the parameters of some method.
As in OO applications we often use object fields to store
data, this limitation can imply changes in source code that
degrade the design of the application. Moreover, developer
has to specify for each application how data is partitioned.
In the second approach, these problems are addressed, as
the ability to deal with data is improved. However, to ex-
tend the provided operators we need knowledge about AOP,
about implementation of the language, and about tools used
to process the language, which may make this task difficult.
Additionally, although these languages are able to deal with
a wide range of applications, in more complexes cases, they
may also require knowledge of AspectJ technology to use
them.

6. Conclusion
This paper presents a library that provides operators to par-
allelize applications in a modular way, using an AOP ap-
proach. It allows a higher reuse of code, as well as incre-
mental development of parallel applications. It is compatible
with other tools that provide multithreaded versions of ap-
plications with a similar approach, making easier to develop
and maintain sequential, multithreaded, distributed memory,
and hybrid versions of the same application. It shows flex-
ibility that allows adaptation of operators provided in order
to fit the needs of a wide range of applications.

It was able to parallelize all JGF benchmarks, with only
minor changes in sequential code, that do not change the
structure of code, while providing a competitive perfor-
mance with traditional approach. It was able to deal with
limitations detected in previous attempts to apply AOP to
solve crosscutting in parallelization, namely regarding con-
text information.

Nevertheless, this approach also presents some disadvan-
tages. First, it requires knowledge of AOP and AspectJ lan-

guage in particular. But probably the biggest disadvantage is
the fact that the relation between parallel code and DSC is
not obvious. Whereas in traditional approach we see the code
where it is executed, in our approach parallelization code is
not visible in DSC. An IDE like Eclipse with AspectJ plug-
in may be useful to minimize this problem. Moreover, there
are no visible contracts in sequential code to tell developers
of sequential code which parts of it they must not change
in order to parallelization code continues working correctly.
Future work should address these points.

Acknowledgments
This work was supported by FCT through projects PRIA
UTAustin/CA/0056/2008 and GAsPar PTDC/EIA-
EIA/108937/2008, and grant SFRH/BD/47800/2008.

References
[1] J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A

benchmark suite for high performance java. Concurrency:
Practice and Experience, 12(6):81–88, 1999.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOP-
SLA ’05, pages 519–538, 2005.

[3] C. Cunha, J. Sobral, and M. Monteiro. Reusable aspect-
oriented implementations of concurrency patterns and mech-
anisms. In AOSD ’06, pages 134–145, 2006.

[4] R. Gonçalves and J. Sobral. Pluggable parallelisation. In
HPDC ’09, pages 11–20, 2009.

[5] J. Hannemann and G. Kiczales. Design pattern implementa-
tion in java and aspectj. In OOPSLA ’02, 2002.

[6] B. Harbulot and J. R. Gurd. Using aspectj to separate concerns
in parallel scientific java code. In AOSD ’04, pages 121–131,
2004.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In ECOOP ’97, pages 220–242, 1997.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of aspectj. In ECOOP ’01, pages
327–354, 2001.

[9] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A disciplined
approach to aspect composition. In PEPM ’06, pages 68–77,
2006.

[10] M. Maia, P. Maia, N. Mendonca, and R. Andrade. An aspect-
oriented programming model for bag-of-tasks grid applica-
tions. In CCGRID ’07, pages 789–794, 2007.

[11] mpiJava. http://www.hpjava.org/mpiJava.html.
[12] J. Sobral. Incrementally developing parallel applications with

aspectj. In IPDPS ’06, pages 95–104, 2006.
[13] J. Sobral and M. Monteiro. A domain-specific language for

parallel and grid computing. In DSAL ’08, 2008.
[14] J. Sobral, C. Cunha, and M. Monteiro. Aspect oriented plug-

gable support for parallel computing. In VECPAR ’06, pages
93–106, 2007.

