
Pluggable Parallelisation

Rui C. Gonçalves, João L. Sobral
Departamento de Informática

Universidade do Minho
4710-057 Braga,

PORTUGAL

[rgoncalves, jls]@di.uminho.pt

ABSTRACT
This paper presents the concept of pluggable parallelisation that
allows scientists to develop “sequential like” codes that can take
advantage of multi-core, cluster and grid systems. In this
approach parallel applications are developed by plugging
parallelisation patterns/idioms into scientific codes (e.g.,
“sequential like” codes), softening the move from sequential to
parallel programming and promoting the separation between
domain specific code and parallelisation issues. Pluggable
parallelisation combines three characteristics: 1) parallelisation is
performed from “outside to inside”, localising parallelisation
concerns into well defined modules, reducing changes required to
the domain specific code and avoiding invasive parallelisation of
base code; 2) control view is separated from data view promoting
a stronger separation of concerns which improves reuse of
parallelisation concerns across platforms and enables fine-grained
refinements; and 3) abstractions can be composed, supporting the
development of more complex patterns based on fine-grained
features. This paper presents the concept of pluggable
parallelisation and shows how some well-known parallelisation
strategies can be implemented in this approach. Results show that
this is a feasible approach and performance is competitive with
traditional parallel programming.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming -
Parallel programming; D.3.3 [Programming Languages]:
Language Constructs and Features – Concurrent programming
structures.

General Terms
Performance, Design and Languages.

Keywords
Parallel programming, non-invasive parallelisation, separation of
concerns.

1. INTRODUCTION
Parallel computing is being pushed to the mainstream by the
advent of multi-core machines and grid systems. The number of
cores on every desktop machine (currently 2 or 4 cores per
machine) will keep increasing. This requires a massive migration
of current sequential applications to this new reality, introducing a
strong pressure for new parallel programming paradigms that can
help on this move.

public class JGFLUFactBench
 extends Linpack implements JGFSection2{

 public static int nprocess;
 public static int rank;

 public void JGFinitialise() throws MPIException{
 int r_count,z_count;
 int p_ldaa;
 n = datasizes[size];
 ipvt = new int [ldaa];
 p_ldaa = (ldaa + nprocess - 1) / nprocess;
 rem_p_ldaa = (p_ldaa*nprocess) - ldaa;
 /* ... */

 if(rank==0) {
 long nl = (long) n;
 ops = (2.0*(nl*nl*nl))/3.0 + 2.0*(nl*nl);
 norma = matgen(a,lda,n,b);
 }

 if(rank==0) {
 for(int i=0;i<a.length;i++){
 if(r_count==0) {
 for(int l=0;l<a[0].length;l++){
 buf_a[z_count][l] = a[i][l];
 }
 z_count++;
 } else {
 MPI.Send(a,i,1,MPI.OBJECT,r_count,10);
 }
 buf_list[i] = z_count - 1;
 }
 } else { // rank!=0
 for(int i=0;i<real_p_ldaa;i++){
 MPI.Recv(buf_a,i,1,MPI.OBJECT,0,10);
 }
 }
 }

Figure 1. LuFact MPI-Based parallelisation
The paradigm with the highest probability of success would
resemble traditional sequential programming and should
maximise reuse of existing sequential codes. Unfortunately,
currently most parallel programming languages require extensive
and invasive source code changes to enable codes to take

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPDC’09, June 11–13, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-587-1/09/06...$5.00.

11

© ACM, 2009. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published
in Proceedings of the 18th ACM international symposium on High performance distributed computing http://dx.doi.org/10.1145/2162024.2162034

advantage of parallel systems. For instance, in MPI the
programmer must insert code to perform data partitioning among
MPI processes and to coordinate the execution and data moves
among processes. As a consequence, parallelisation issues
become tangled with domain specific code [8] and changes are
non-reversible. In large scale applications this can limit
application modularity and maintainability, and consequently, the
ability to evolve application code in an independent manner.

We illustrate these issues by presenting code a snippet of the JGF
MPI implementation of the LuFact [15] (Figure 1), a Java version
of the popular Linpack benchmark.

The code is shown in three colours (fonts): i) the basic
functionality (LuFact) in black; ii) MPI control related issues in
red (grey) and iii) data partition issues in blue (italic). These three
concerns are tangled, harming modularity, understandability, etc.

This paper proposes an approach that addresses these issues by
supporting a traditional “sequential like” style of programming.
Parallelisation is performed by “plugging” a set of parallelisation
patterns/idioms that transform “sequential like” codes to take
advantage of parallel systems (e.g., parallel codes). This approach
modularises parallelisation issues into a set of transformations,
enabling independent development of domain-specific and
parallelisation issues, and reducing changes required to the basic
code. These are key features to promote a broader usage of
parallel processing, as most software companies will only have a
few experts in parallel computing, although most programmers
would be more familiar with a “sequential like” style of
programming. Moreover, it promotes reuse of legacy code.

This article is organised as follows. Section 2 presents the
pluggable parallelisation approach. Section 3 performs an
evaluation of this approach with two case studies, including
performance results. Section 4 discusses the limitations of the
approach and section 5 presents related work. Section 6 concludes
the paper presenting directions for further research.

2. PLUGGABLE PARALLELISATION
Pluggable parallelisation addresses the development of parallel
applications by providing abstractions to transform
domain-specific code into parallel code. The process starts with a
“sequential like” code that is transformed into a parallel code by
using a set of parallel programming abstractions. In this process
the programmer can also provide additional parallelisation
specific code.
This “transformation oriented” view presents several advantages
over more traditional approaches. Parallelisation is performed
“from outside to inside” minimising changes required to the base
code and can be applied to legacy code that cannot be made
parallel with parallelising compilers. Moreover, keeping these
transformations in separate modules enables independent
development: it is easier to maintain/change parallel code and
programmers that write domain-specific code can be oblivious of
parallelisation issues.
This approach introduces several questions:
1) What kind of transformations to support?
2) How to specify transformations?

3) How to combine transformations to achieve more complex
ones?
4) How to express common parallel patterns in this approach?
5) What are the main limitations of this type of approach?
The next sub-section contributes to answer to the first and second
questions. The following sub-sections focus on the third and
fourth questions. The discussion and related work sections discuss
the main limitations of this approach.

2.1 Parallel Programming by Transformation
For several years we have been converting sequential Java codes
to their equivalent parallel counterparts. One interesting source of
case studies was the Java Grande Forum (JGF) benchmark [15].
This benchmark includes well known computational kernels that
exist in many scientific codes (some kernels were simply taken
from the SciMark benchmark). This benchmark includes parallel
versions (e.g., MPI based) of most of these well known sequential
codes. The main question was: how could a programmer
transform sequential versions into parallel equivalents without
directly inserting parallelisation code into the source, avoiding
tangling presented in Figure 1?
Parallelisation of the JGF benchmarks follows a SPMD model: all
nodes execute the same sequential code, but each node works on a
different part of the data and certain operations are performed by
a subset of nodes. Additional data moves among nodes may be
required, if each part of data can not be processed independently
from others. This “natural style” of moving from sequential to
parallel codes was confirmed by requesting undergraduate
students, in parallel computing courses, to develop parallel
versions of sequential Java codes. They tended to follow an
approach similar to the one used in the JGF benchmarks.
Based on this set of experiences, we devised a set of programming
abstractions that could help to perform code transformations for
parallelisation. Identified transformations specify actions like:
1. Block B of sequential code executes on all nodes;
2. Block B of code executes on nodes N where condition C holds;
3. Data structure D is partitioned among nodes using strategy S;
4. Update remote data at execution point E.
Non-invasively applying these transformations to scientific codes
requires a way to identify, from outside (i.e., through a unique
global name), blocks of code B, data structures D and execution
points E. For this purpose we resorted to an object-oriented
language as the basic language. Object-oriented languages offer a
richer set of abstractions (e.g., classes, methods, fields), besides
traditional structured programming abstractions. As a
consequence, they provide a richer set of alternatives to identify
program elements.
We implement transformations upon the concept of object
aggregate [1][17]. Object aggregates are objects that are
replicated on all nodes (i.e., each node has a local instance of the
object). The idea is to transform object creations in the sequential
code into creations of object aggregates in the parallel code (i.e.,
transformed code). Subsequent method calls (originally in the
sequential code) can be performed by the local aggregate
representative (by default) or by all elements of the aggregate. It
is possible to restrict method executions to specific aggregate

12

elements. For that purpose a condition can be provided that can
depend on the node identifier, method parameters and object data.
Operations of type 1) and 2) can be mapped into method
executions that are (conditionally) executed by aggregate
elements. Operations of type 3) and 4) are expressed by
operations controlling how data stored in objects is distributed /
updated among aggregate elements at specific execution points.
Operations of type 1) and 2) manage task coordination (i.e.,
control view) and operations of type 3) and 4) manage data
distribution and dependence issues (i.e., data distribution view).
The proposed approach promotes the management of these issues
as separate concerns, by managing these two views as separate as
possible. The control flow view specifies how a sequential control
flow is transformed into multiple control flows and how to
coordinate parallel control flows. Data distributions specify how
data is partitioned among parallel tasks and what data moves are
required to keep data consistent. This separation introduces
several benefits: 1) it allows a more incremental development and
understanding (e.g. first understanding the control flow and then
the data distribution strategy); 2) it is conceptually possible to
change one independently of the other, although we foresee that
the common case will be changing data distributions (e.g., some
parallelisation patterns differ only in data dependencies, requiring
specific data distributions and moves).
Figure 2 illustrates this model. The sequential code creates a
single object instance obj1. Method call a is performed on this
instance, which issues a method call b to the same instance. After
applying transformations of type 1), the resulting parallel code
creates an aggregate of obj1 (one object instance per node) and
call a executes on all nodes. Method call b is also issued on all
nodes, since it is nested inside call a. But, in this specific
example, we explicitly restricted the execution of call b to the
object on node 0, by composing a transformation of type 2).

Figure 2. Parallelisation process based on object aggregates

By default each object aggregate manages its data in an
independent manner (i.e., each aggregate has a local copy of the
data). The same holds for static data allocated in static classes.
We support several transformations that can change the default
behaviour. The idea is to specify how data is distributed among
aggregate elements. We support BLOCK and CYCLIC data
partitions and global and local view of data. In the former, data
indexes refer to the local partition, in the latter data indexes are
relative to the global data structure. Figure 3 illustrates this
transformation. There are transformations to inject code to change
from one view to the other, during execution, and to update
remote data. Moreover, since we start with a sequential code we
allocate a shadow of the data in node 0. This is usually required
since data initialisation performed in the sequential code usually
needs to be performed in node with identification 0.

Figure 3. Global and local view of data

We also support non-SPMD code through remote objects and
asynchronous method calls. In the former, an object in the
sequential code can be placed on a remote node (chosen by the
run-time system or specified by the programmer). In the latter, the
method call is performed in a new thread of control.
The remainder of this section gives an overview of the
template-based syntax used to express these transformations and
presents common transformations. The two next sub-sections
overview currently supported control and data transformations.
The last sub-section discusses cases where these two views are
more tightly coupled and presents sample code.

2.1.1 Template-Based Syntax
Code transformations are expressed in a template-based syntax
(similar to C++ templates). Transformations can be applied to
classes, methods (including parameters and return values) and
data fields: these are the types of parameters in templates. A
template-based syntax also supports the specification of
composition of abstractions through template nesting (described
in subsection 2.2). Table 1 presents relevant transformations
currently supported.

Table 1. Transformations currently supported

Transformation Description
Separate<T> Instances of class T can be created

on any cluster node

GridSeparate<T> Instances of class T can be created
on any grid node

Replicate<T> Create an instance to class T on
each available resource (e.g. node)

Broadcast<T,M> Execute method call M on all
aggregate elements (e.g., nodes)

CondExe<T,M,C> Restrict execution of method M to
places where condition C holds

Async<T,M,E> Spawn a new thread to execute M,
wait for the spawned thread at E

Partitioned<T,D,
[BLOCK,CYCLE]>

Distribute the data field D, of class
T, using a partition strategy

ChangeView<T,E,D,
[Local|Global]>

Change field D from/to local/global
view at execution point E

Scatter*/Gather*
<T,E,D>or<T,E,M>

Update copy of field D or method
parameter M at execution point E

Node 0 Node 2 Node 1

Global view

Seq. code Parallel code

Node 0 Node 2 Node 1

Local view

obj1obj1

call a

Node 0

call b call b call b

call acall a

call a

obj1

Seq. code

call b

Parallel code

obj1

Node 1 Node 2

13

Transformations have the following generic syntax:
 TemplateName<
 Class T
 [,Method M]*
 [,ExecutionPoint E]*
 [,Condition C]
 [,DataField D]
 >
Class T specifies the class where the transformation applies,
replacing instances of class T by a new type compatible version
of the class. One example is Replicate<T> that specifies that one
instance of class T should be created on each available computing
resource (e.g., class T becomes an object aggregate). For
compactness, in this article, we generally omit template parameter
class T, although it is important to understand that transformations
generally change the implementation of class T, so this parameter
must be explicitly provided.
Method M and ExecutionPoint E are syntactically similar (both
specify method executions) but they are used for different
purposes. The former is used to specify blocks of code (e.g., a
method) and the latter is used to specify execution points to plug
code generated by the transformation. One example is the
Async<T,M,E> template, that spawns a new thread to execute
method M and waits for thread completion on execution point E
(generally another method execution).
Parallelisation patterns may require case specific code. Method M
can also be used for this purpose. In this case, the definition of M
is given along with the template, instead of being defined in the
sequential code.
Condition C specifies that a transformation takes place only on
certain conditions. This is particularly important in SPMD code
since some operations are frequently performed by a subset of
tasks. One example is CondExe<class, “someMethod”,
“iAmRoot?”>, which just executes someMethod if calls to
iAmRoot return true.

2.1.2 Control Flow Transformations
These intend to transform a single control flow in the “sequential
like” code into multiple control flows running in parallel. The
most basic transformation is to replicate the same task on multiple
nodes, which is achieved using Broadcast<T, M>. This executes
the method M in all resources (e.g., nodes). It can only be applied
to static methods. For non-static methods an additional
Replicate<T> is required to create an instance of class T on every
node before performing the broadcast. A more loosely coupled
task creation can be specified by Async<T, M>, which spawns a
new task to execute the method M. Some transformations require
more than one method parameter. For instance, a refined Async
can specify a second method (i.e., execution point) to wait for the
spawned threads on a different execution point (e.g., Async<T, M,
E>). Two other currently supported templates have the purpose of
limiting/synchronising the execution of parallel control flows.
Barrier<T, E> inserts a barrier at the specified execution point.
CondExe<T, M, C> limits execution of method M to aggregate
elements (or compute nodes) where condition C holds. Note that
Replicate<T>, Broadcast<T, M> and CondExe<T, M, C>
implement transformations of type 1 and 2 presented in section
2.1.

2.1.3 Data Distribution View
Data transformations support the specification of data partitions
and updates among nodes (or aggregate elements, if the data is
not stored in static fields). For this purpose we provide a set of
pre-defined data partitions, including block and cyclic, that can be
used of-the-shelf or extended to address application specific
needs. Partitioned<T, D, partitionType> specifies that data field
D will be partitioned among aggregate elements according to
partitionType policy. The point where data is actually scattered or
gathered (or reduced) is specified using templates Scatter<T, E,
D> and Gather <T, E, D>. The reduce template requires an
additional parameter specifying the reduce operator (this is
another case where a method can be provided along with the
template specification). These operations implement
transformations of type 3 and 4 introduced in section 2.1.
Conceptually, it is possible to provide a set of collective
operations equivalent to MPI. The difference is that these manage
information stored in class/object fields and the template
parameter specifies the place in the code where the operation is
inserted (by means of execution point E). More fine-grained data
moves are supported by developing case specific templates
(currently we must resort to AspectJ [11] to write these
templates). One of such examples is the use of point-to-point
messages (e.g., the JGF SOR benchmark). In that case a new
template can be developed to perform the required data move.
Our library of data partitions provides functions to access to local
data (see Figure 3) within these templates.

2.1.4 Interplay of Transformations
Control flow transformations keep the data centralised,
performing data initialisation at the root node. This behaviour is
modified in three ways. 1) if data is initialised in an object
constructor (e.g., the Replicate template implicitly calls the object
initialisation method on each aggregate member); 2) when some
data structure is used as a method parameter (e.g., in the
Broadcast template all data is sent by value); 3) when data
initialisation methods are broadcasted (or called from a
broadcasted method).
Figure 4 illustrates how data distribution transformations change
this default behavior in the JGF Series benchmark.
Transformations are specified into a separate module, but for
compactness and understandability purposes these were inserted
as comments in the basic code, showing where the transformation
will inject the parallelisation code.
class SomeClass {
...
 // Partitioned<SomeClass,TestArray,BLOCK>
 double TestArray[] = new ...
...
 void Do() {
 // ScatterBefore<SomeClass,Do(),TestArray>
 // ChangeView<SomeClass,Do(),TestArray,LOCAL>
 ...
 for (int i = 0; i < TestArray.length; i++)
 TestArray[i] = someComputation(/*.. */);
 }
 // GatherAfter<SomeClass,Do(),TestArray>
 // ChangeView<SomeClass,Do(),TestArray,GLOBAL>
 }
}

Figure 4. JGF Series data distribution view

14

The Partitioned<SomeClass,TestArray,BLOCK> injects code to
support the block-wise distribution of TestArray among aggregate
elements. ScatterBefore<SomeClass,Do(),TestArray> injects
code to update each partition before the execution of method Do
(in this case, the template injects a MPI_Scatter function in the
sequential code). ChangeView<…,Do(),TestArray,LOCAL>
makes each process to switch to the local view of data. By
changing to the local data view, after that execution point, the
variable TestArray refers to the local block of data (e.g., the
TestArray.length is the size of the local block). The reverse
operations are performed at the end of method Do: data is again
collected in the master and the view is changed to global. Note
that there are means to change the data view independently from
the scatter and gather operations. This allows performing
scatter/gather and change view operations in different execution
points, which, in some cases, may lead to more efficient
programs, by scattering/gathering the data before it is actually
needed.
Figure 5 presents the complete example, now including the
control view. In this case, SomeClass is transformed into an object
aggregate (by applying the Replicate template) and calls to the Do
method are executed by all members of the aggregate (by
applying the Broadcast template). An additional Separate
transformation can distribute instances of SomeClass across
nodes of a cluster.
Core functionality
class SomeClass {
 double[] TestArray = ... // initialise array
 void Do() {
 for (int i = 0; i < TestArray.length; i++)
 TestArray[i] = someComputation(/*.. */);
 }
}
Parallelisation (data view)
Partitioned<SomeClass,TestArray,BLOCK>
ScatterBefore<SomeClass,Do,TestArray>
GatherAfter<SomeClass,Do,TestArray>
Parallelisation (control view)
Replicate<SomeClass>
// all aggregate elements execute method Do
Broadcast<SomeClass,Do>

Figure 5. Example of separation of data and control view.

2.2 Composing Transformations
Composition issues can arise when multiple transformations have
impact in the same place in the sequential code (e.g., a method).
In addition, building complex parallelisation and the ability to
extend existing templates requires the composition of several code
transformations.
The composition model builds upon an incremental development
process: each transformation generates new code that can be
transformed by another template. The key point is that each
template might have impact on additional methods or execution
points introduced by transformations previously applied. This
enables the generation of different parallel code by composing
transformations in different orders. Thus, a small set of templates
can be used to generate a larger range of parallel programs.
Moreover, additional tools can be provided to ensure that only
valid compositions are allowed.
Figure 6 presents the code generated (for a shared memory
machine) by applying a sequence of Replicate, Broadcast and

Async transformations. Each call to someMethod is executed by a
new thread on each aggregate element.

“Sequential like” code

public class SomeClass {
 void someMethod () { … }
}

SomeClass f = new SomeClass();
f.someMethod();

Generated parallel code

...
for (int i=0; i<numOfReplicas; i++) {
 agg.add(new SomeClass()); // Replicate
 new Thread() { // Async
 void run() {
 agg.elementAt(i).someMethod();
 }
 }.start();
}

Figure 6 - Code resulting from the application of the sequence
of transformations: Replicate<SomeClass>,

Broadcast<SomeClass, ”someMethod”> and Async<
SomeClass, ”someMethod”>.

In this case, the Replicate template injects code to create an
aggregate of instances of SomeClass. The default behaviour
would be to issue the call to someMethod only in the aggregate
representative. By applying the Broadcast transformation to
someMethod it will be executed in all aggregate members. The
Async template acts upon the result of the Broadcast template, by
issuing all method calls in a new thread (i.e., it also has impact on
method calls generated by the Broadcast template).
A different parallel program can be generated by changing the
order of Broadcast and Async transformations. In that case, a
single thread will sequentially perform the call to each aggregate
element, since first the asynchronous call is applied and then the
broadcast.
A composition of transformations is specified by nesting
templates. The composition in the example of Figure 6 would be
specified as Async<Broadcast<Replicate<SomeClass>,…>,…>).
This syntax may become cumbersome for complex compositions.
One problem is the lack of line breaks. This issue is solved by
introducing a syntax that allows to store each program
transformation into a variable and introducing one additional
template parameter that specifies the program where the
transformation applies. A special name (e.g., MAIN) represents
the original “sequential like” code. Under this approach, we could
write the transformation of Figure 6 as:
 prog1 = Replicate<MAIN,SomeClass>
 prog2 = Broadcast<prog1,SomeClass,”someMethod”>
 prog3 = Async<prog2,SomeClass,”someMethod”>
This syntax introduces the possibility to specify a transformation
tree (always starting in the “sequential like” program) instead of a
single transformation chain. This allows a partial ordering of
transformations (enough for many applications). Transformations
acting on common methods/execution points should be
completely ordered. Otherwise, the composition may produce an
unpredictable result as it must select an order to apply
transformations (e.g., the final result could be implementation
dependent).

15

Template extensibility is also based on composition of templates
(although we also provide means to build a new template from
scratch, by using code templates in AspectJ [11]). To extend a
template we compose additional functionality to that template.
For instance, we could define a new template to implement a
Farm based on Replicate, Scatter and Gather:
 Farm<Class T, Method compute, DataField field>{
 prog1= Replicate<T>
 prog2 = Broadcast<prog1, T, compute>
 prog3 = Scatter<prog2, T, compute, field>
 prog4 = Gather<prog3, T, compute, field>
 }
The last composition issue is related to the generation of code for
specific target platforms. The proposed approach targets the
generation of efficient code for a wide range of architectures,
including multi-core, clusters, computational grids and systems
composed of combinations of these. One common way to take
advantage of clusters of multi-core machines is to use a mix of
MPI and OpenMP. For this purpose the approach supports the
Separate template to specify cluster-aware transformations and
GridSeparate to specify transformations for computational grids.
For instance, an aggregate of objects distributed through the
nodes of a cluster, with a second level of inner aggregates can be
specified by Replicate<Separate<Replicate <SomeClass>>>.
This inner aggregate can more efficiently take advantage of
multi-core processors by communicating through shared memory.

2.3 Expressing Common Patterns
This section revises some well known parallelisation patterns and
outlines how they can be supported in the proposed approach.
Patterns are directives, providing guidelines for solving classes of
parallelisation problems. They are collections of solutions and
there is no “one solution fits all”. The proposed approach does not
force a particular solution for each problem. Instead, it provides a
set of parallelisation patterns that can be composed to address
each specific case. The purpose of this section is to illustrate how
to implement one specific variant of each of these patterns,
namely, it shows how Farm, Pipeline, Divide & Conquer and
Heartbeat can be plugged into “sequential-like” codes.

2.3.1 Farm
In the farm parallelisation the data is divided into independent parts,
which are processed in parallel by several workers, and joined after
processing.
The farm pattern can be plugged into “sequential like” code by
transforming a single object instance into an aggregate of objects.
This requires the specification of the class to be replicated, the
method to process each task and split and merge functions (e.g.,
Farm<Class T, Method compute, Method split, Method join>). It
can be implemented by composing Replicate with Broadcast, and
providing methods to split and join the data, in a similar way to
Scatter and Gather functions. However, in this case the Scatter and
Gather act on method parameters and return value, instead of acting
on data stored in object fields (although using an object field to store
the data is also possible, as shown in section 2.2).
Figure 7 shows a farm pattern applied to the JGF RayTracer. Class
T was replaced by the RayTracer class and the compute method
becomes calls to render method.

Figure 7 - JGF RayTracer parallelisation.
This case shows how it is possible to provide case specific code to
inject in the parallel code. Methods split and join, defined in the
parallelisation, specify how to divide the Interval method parameter
and how to merge the resulting integer array.

2.3.2 Pipeline
A pipeline consists of a chain of processes working in parallel on
different parts of data. Each part of data is successively processed
by all processes in the chain.
A pipeline can be plugged into sequential code by replacing an
instance of a class by a pipeline of elements of the same class.
Additional split and join methods can be used to divide the original
data into independent pieces and to merge the processed pieces
(e.g., Pipe<Class T, Method compute[, Method split, Method
join]>. Another way to implement a pipeline, when the sequential
code includes a chain of method calls, is to use the Async pattern.

2.3.3 Divide & Conquer
 This pattern addresses problems that are recursively divided into
simpler sub-problems that can be solved in parallel. The “sequential
like” code where the pattern applies can be intrinsically divide &
conquer (e.g., problems that are sequentially solved in a recursive
manner). In this case, the parallelisation pattern spawns a new
parallel task on each recursive call, using the Async template (with
future type synchronisation [3], an approach similar to fork & join
frameworks [12][14], but avoiding invasive changes in sequential
code).
We illustrate this pattern (Figure 8) with the classic Fibonacci
function (this is an example of how the proposed approach can
support non-SPMD code).

Figure 8 - Parallel computation of Fibonacci numbers.

Core functionality
RayTracer rt = new RayTracer();
Interval interval = new Interval(0,500);
int Result[] = rt.render(interval);
Farm parallelisation
Vector<Interval> split(Interval in) {
 … // split in into sub-intervals
}
int[] join(Vector<int[] in) {
 … // join rendered sub-images
}
Separate<Farm<RayTracer, render, split, join> >

Core functionality
public class Fib {
 long value;
 public Fib(long val) { value = val; }
 public long compute() {
 if (value <=1) return(value);
 else{
 Fib f1 = new Fib(value-1);
 Fib f2 = new Fib(value-2);
 Long r1 = f1.compute();
 Long r2 = f2.compute();
 return(r1.longValue()+r2.longValue());
 }
 }
}
Parallelisation
Async<Fib,”compute”,”Long.longValue”>
Separate<Fib>

16

Calls to compute methods are made asynchronously through the
Async template. Calls to Long.longValue (i.e., the unboxing function
that transforms an object Long into a long value) provide the
execution point where a fake return value is replaced by the result of
the computation. We also specify that instances of the Fib class can
be placed on remote resources, by making them Separate objects,
otherwise the application would run on a single machine.
A variant of Divide & Conquer is the search for the best solution
(e.g., N-Queens). Recursive calls are only issued if they could lead
to a better solution. This data dependence can be addressed by
additionally plugging appropriate template to conditionally
Broadcast data field at certain execution points.

Figure 9 – JGF LuFact parallelisation.

2.3.4 Heartbeat
Heartbeat patterns are generally applied to problems solved
iteratively. This type of pattern is addressed by executing (i.e.
broadcasting) the method that computes iterations on all nodes.
Additional data moves (at each iteration) can be injected into the
sequential code through data distribution transformations.
The JGF LuFact example of a typical heartbeat application (Figure
9), it is a Java version of the popular Linpack benchmark. In this
example we extracted three blocks of code into methods in order to
support conditional execution by means of CondExe. Before and
after executing the dgefa method we need to scatter and gather
values of matrix a. Note that in this case a method that returns a
value is conditionally executed. That value is automatically
broadcasted to all aggregate elements (e.g., by CondExe).
The parallelisation of the LUFact is very close to the parallelisation
of the computation of All-Pairs Shortest Paths (ASP) [2]. This
makes it attractive to develop a template that can be used in both
cases. Figure 10 presents that template. It creates an aggregate of
ClassT, broadcast execution of method2BCast to all aggregate
elements, conditionally executes method2CEx when condEx is true
and field2Dist is distributed among aggregate elements using the
partType. This template is enough for the ASP application, but for
LUFact it only implements statements in italics from Figure 9. As
such, in this case, three additional condExe templates are also
applied.
HearbeatBC<ClassT, method2BCast,
 method2CEx, condEx, field2Dist, partType> {

 Separate<Replicate<ClassT>>
 Broadcast<ClassT, method2BCast>
 CondExe<ClassT, method2CEx, condEx>

 Partitioned< field2Dist, partType >
 ScatterBefore<ClassT, method2BCast,field2Dist>
 GatherAfter< ClassT, method2BCast, field2Dist>
}

Figure 10 – Template for JGF LuFact and ASP parallelisation.
Another important point about code in Figure 9 is that a shared
memory version of the LUFact can be efficiently derived by
ignoring transformations that implement the data distribution.

3. PERFORMANCE EVALUATION
This section evaluates the proposed approach with two case studies
from the Java Grande Forum (JGF) [15] and presents performance
results. JGF includes benchmarks in sequential, concurrent (i.e.,
Java threads) and parallel (Java MPI) variants. This section
describes developed parallel versions of Crypt and LU factorisation,
which are in the Farm and Heartbeat category. Parallel versions of
the other benchmarks were developed in a similar way, as they are
also in these pattern categories.
The Crypt benchmark encrypts and decrypts a byte array. The
processing is performed in the method Do of IDEATest. This
application is parallelised by processing parts of the byte array in
parallel, which was performed with the Replicate template to create
one instance of IDEATest on each node and executing the method
Do on all nodes. Scatter and Gather templates divide the byte array
among workers (field plain1) and gather the processed results (field
plain2). The CondExe template was used to ensure that some data
initialisations were performed only at node 0.

Core functionality
public class Linpack {
...
 final int dgefa(double a[][],
 int lda, int n, int ipvt[]) {
 double[] col_k, col_j;
 double t;
 int j, k, kp1, l, nm1;
 int info;

 // gaussian elimination with partial pivoting
 info=0;
...
 // find l = pivot index
 l=idamax(n-k, col_k, k, 1)+k;
 ipvt[k]=l;

 col_k=calcMults(col_k, n, k, kp1, l);
 if(col_k[l]!=0) {
 for(j=kp1; j<n; j++)
 reduceColumn(a, n, col_k, j, k, kp1, l);
 }
...
 info=calcInfo(a, n, info);
 return info;
 }
}
Parallelisation code (control view)
Separate<Replicate<Linpack>>
Broadcast<Linpack,
 'int dgefa(double[][], int, int, int[])'>
CondExe<Linpack,
 'double[] calcMults(double[] col_k, int n,
 int k, int kp1, int l)', 'a.getPart(k)'>
CondExe<Linpack,
 'int calcInfo(double[][] a, int n,
 int info)','a.getPart(n-1)'>
CondExe<Linpack,
 'int idamax(int n,double dx[],int dx_off,
 int incx)','a.getPart(dx_off)'>
CondExe<Linpack,
 'void reduceColumn(double[][] a, int n,
 double[] col_k, int j, int k,
 int kp1, int l)','a.getPart(j)'>
Parallelisation code (data view)
Partitioned<'Linpack.a',[CYCLE][*]>
ScatterBefore<Linpack,
 'int dgefa(double[][], int, int, int[])',
 'double[][] Linpack.a'>
GatherAfter<Linpack,
 'int dgefa(double[][], int, int, int[])',
 'double[][] Linpack.a'>

17

The LUFact performs a LU factorisation through an iterative
algorithm (e.g., Heartbeat), requiring the broadcast of a matrix
column at each iteration (different for each iteration). We followed a
similar approach to the Crypt benchmark, by replicating instances of
class Linpack and executing the dgefa method on all nodes. This
example was presented in Figure 9.
Performance benchmarks were performed by comparing execution
times of parallel versions built with this approach and equivalent
hand written parallel versions (MPI based taken from JGF). Table 2
presents the speed-up, relative to the sequential versions, on a
cluster of 8 bi-Xeon 5130 machines (a total of 32 cores, 4 per
machine) and JDK 1.5_3. The first four benchmarks are from JGF
(SOR is red-black successive-over relation, another typical heartbeat
and the RayTracer is a typical farm).

Table 2. Speed-up of hand written (HW) parallel applications
and built using pluggable parallelisation (PP) on a cluster

4 cores 16 cores 32 cores
Application

HW PP HW PP HW PP

CryptC 3.54 3.53 7.80 7.56 9.56 9.27

SeriesC 3.11 3.13 12.26 12.29 24.42 24.61

SparseMatmultC 2.11 2.12 6.85 8.28 10.53 19.46

LUFactC 2.22 2.29 2.85 3.03 2.07 2.53

SORC 1.53 1.25 2.93 1.86 2.87 2.49

MDB 3.78 3.74 9.94 10.89 - -

RayTracerB 3.82 3.88 14.13 14.38 25.64 26.16

Overheads introduced by our approach are generally very low.
These are due to code re-factorings (e.g, moving blocks of code to
methods) and due to the use of AspectJ. These are generally low as
code transformations are made at compile-time and most injected
code can be inlined. The amount of overhead depends on method
granularity: fewer operations executed at each intercepted execution
point represent higher overheads. The sparse matrix multiplication
performs better with pluggable parallelisation. Interestingly, in this
benchmark, we simply used a standard data partition strategy that
seems to provide some advantage over the one used in JGF. Both
LuFact and SOR scale poorly due to communication overheads
(both require certain amount of communication per iteration).
Table 3 presents the execution times on machine bi-Xeon E5430 (a
total of 8 cores). In this case hand written versions are implemented
with Java Threads (also provided by the JGF). It should be stressed
that shared memory implementations with pluggable patterns share
most of the code with the distributed memory implementations and
the “sequential like” code is the same for both versions (usually
only data distribution issues are not included).
In this case the performance of both versions is also very close. The
speed-up of sparse matrix multiplication drops with 8 cores. We are
currently investigating this issue but it is probably due to less data
locality. There is also some performance difference in MolDyn. In
this case the difference is due to generation of fine-grained tasks
that impose higher overheads.

Table 3. Speed-up of hand written (HW) parallel applications
and built using pluggable parallelisation (PP) on a SMP

4 cores 8 cores
Application

HW PP HW PP

CryptC 3.7 4.1 7.0 7.5

SeriesC 3.4 3.7 7.9 7.9

SparseMatmultC 4.1 4.3 8.3 3.0

LUFactC 3.6 3.6 5.7 5.5

SORC 3.7 3.9 5.9 6.7

MDB 2.9 2.4 4.2 3.2

RayTracerB 3.3 3.8 7.5 7.2

4. DISCUSSION
We start this section by comparing the proposed approach against
current mainstream programming languages, i.e., MPI and OpenMP
(Table 4).

Table 4. Assessment of OpenMP, MPI and pluggable patterns
 OpenMP MPI PP
localised / modular
parallelisation

no (yes) no yes

incremental parallelisation yes (no) no yes

unpluggability yes no yes

code reuse / composition
of abstractions

no no yes

support for new
abstractions

no no yes

support for multi-core/
cluster/grids

yes/
no/ no

no/
yes/no

yes/
yes/yes

Both OpenMP and MPI lead to tangled code (e.g., no modular
parallelisation), however OpenMP seems better in this respect, as all
parallelisation statements can be placed into annotations (except for
more complex issues). The use of annotations makes it easy to
identify parallelisation-related statements. Tangled code makes it
hard to understand MPI programs, as each statement must be
tracked either to domain-specific issues or to parallelisation issues.
The proposed approach modularises parallelisation issues into
transformations.
Incremental parallelisation means that we can start by sequential
code and progressively perform the parallelisation, with minor
impact on the original code. This is supported in OpenMP by
inserting code annotations, although, more complex issues usually
require code re-factorings. In this matter, OpenMP and our approach
seem to have a similar support.
Unpluggability of parallel code is a nice property of OpenMP since
the standard allows a compiler to ignore parallelisation directives.
This can also be true even if the program has calls to OpenMP run-
time. The standard defines stubs for implementing these run-time
libraries on machines that do not support OpenMP. Unpluggability
is also supported in our approach.

18

A weak point of MPI or OpenMP is the lack of support to include
new abstractions and to compose instances of parallelisation code
into reusable modules. In MPI this is due to the fact that
parallelisation code is mixed with domain specific code. In OpenMP
this limitation is mainly due to its annotation-based nature that
confines the set of abstractions to the set provided by the language
and pre-empts the addition of parallelisation specific code in a
modular way.
OpenMP only supports shared memory systems and MPI only
supports distributed memory systems. Pluggable parallelisation
supports both types of target platforms by “plugging” different
transformations for each type of target platform. Our GridSeparate
template supports grid environments.
We performed additional measurements to assess the usability and
code reuse of each approach. Table 5 presents the number of non
commenting source statements (NCSS) for each benchmark
measured with the JavaNCSS tool [19], version 29.50. The NCSS of
parallelisation statements were manually collected, following a
philosophy similar to the one implemented by the tool. OpenMP
data is based on the JGF JOMP implementation, where OpenMP
directives are specified as Java comments that are not considered by
the NCSS tool. In that case we counted each OpenMP directive as
one statement.

Table 5. NCSS of various parallelisation approaches

Base
code JOMP MPI Java PP

Application

N
CS

S

N
CS

S

G
ro

w

N
CS

S

G
ro

w

N
CS

S

G
ro

w

Crypt 190 193 2% 242 27% 217 14%

LUFact 239 240 0% 328 37% 262 10%

Series 70 71 1% 115 64% 79 13%

SOR 56 72 29% 155 176% 110 96%

SparseMatmult 60 100 67% 109 82% 74 23%

MD 261 -1 - 283 8% 271 4%

RayTracer 240 240 0% 273 14% 259 8%

The OpenMP parallelisation (using JOMP) usually results in a small
increase due to OpenMP directives. There are two exceptions: the
SOR and the SparseMatMult. The increase in the former is due to
the use of a different algorithm for all parallel versions (a version
named red-black). The increase in the later is due to code to
schedule loop iterations to threads.
The MPI version leads to the highest number of statements on every
cases. This is due to the statements to specify data partitioning and
coordination among MPI processes. More problematic is that these
statements are tangled with the basic functionality, making hard to
reuse parallelisation code.
The proposed approach always requires fewer statements than its
MPI equivalent implementation. This is due to the reuse of the data
partitioning strategy in the library and to the template based syntax.
The lower count of SparseMatMult is due to the reuse of a default

1 The JGF does not include the JOMP implementation of MD

partitioning strategy, as the data partitioning, in this case, is simpler
than the scheduling of loops to threads (the same can also be noticed
in the MPI-based implementation, where this case is the one with
less increase in statements, when compared with the JOMP
implementation). The proposed approach tends to generate a higher
number of statements than OpenMP, although it should be stressed
that OpenMP does not support distributed memory systems (i.e.,
these numbers do not include the code required to specify data
partition).
Applying pluggable patterns to parallelise legacy code requires that
the base code should be amenable for parallelisation. For instance,
the sequential JGF version of the SOR does not use the red-black
variant, so the parallelism that can be introduced is quite limited (in
the case a complete re-write was required). Experience showed that
in general some code re-factorings are required. The most common
is to move a block of code to a method (M2M) to expose a new
execution point and/or to name a block of code (as it was performed
in LuFact) or to change the place where a certain operation is
performed (MMC). These execution points are required to “plug”
the parallelisation code into the right places. One less frequent re-
factoring is the exposition of context (e.g., the addition of a new
parameter to a method (PDP), or to move a variable to an object
field (M2OF). Since the parallelisation is performed “from outside
to inside” the pluggable parallelisation must have access to context
information. In traditional systems context information is “pushed”
by calling a programming API (e.g., creating a Farm class). In the
proposed approach this information must be “pulled” by the pattern.
To preserve modularity, sometimes the required information must
be explicitly exposed by making a re-factoring (e.g., it does not
make sense to expose a local variable). Table 6 summarises the re-
factorings performed on each benchmark. We classify each re-
factoring as improving the program structure (G), degrading the
structure (B) and neutral (N).

Table 6. Description of re-factorings required to JGF
benchmarks

 Expose exec. point Expose context

Crypt 2xM2M (G) -

Series 2xM2M (B) -

SOR M2M (G), MMC (G) M2OF (G)

LuFact 3xM2M (2G/B) -

RayTracer M2M (G) 2xM2OF (G/B),
PDP (G)

SparceMatmult M2M (G), MMC (N) -

MD M2M (G) -
M2M – Move to Method; MMC - Move Method Call; M2OF – Move
Variable to Object field, PDP – Processing Dependent of new Parameter

The current implementation uses AspectJ code templates that are
pre-processed by a tool. These issues and implementation details are
out of the scope of this paper (some details can be found in [18]).
Since we rely on AspectJ as an implementation tool, the supported
execution points is a subset of the one provided by AspectJ. The
implementation of the Partitioned template requires direct
processing of the source code, since we needed to keep track of data
allocation statements, identifying the size of data allocated to each
object field.

19

5. RELATED WORK
Recent work focuses on using Aspect Oriented Programming [10]
(AOP), namely AspectJ [11], to separate parallelisation concerns
from domain specific code [8][16][13], on the development of
reusable aspects to implement well known patterns [7][4][17] and
on extending AspectJ with a joinpoint model for loops [9]. AspectJ
is an alterative to implement parallelisation concerns but it has three
significant limitations: 1) it unnecessarily exposes AOP technology
to the programmer (e.g., aspects, advices and pointcuts). 2) it lacks a
suitable composition model, since aspects were designed to
compose with some basic functionality and not to compose one with
each other. Composability of abstractions is essential to develop
complex patterns. 3) the most important is the lack of powerful
constructs to implement static code transformations as it relies too
much on a joinpoint model that captures dynamic events. There are
no language constructs to address accesses to data arrays (e.g., there
is no way to intercept accesses to specific array indexes to
implement data transformations). This is essential to parallelise
legacy code, where methods share data structures. Probably this is
why authors of [8] have written “without completely re-writing
LUFact, there is nothing more that can be done using AspectJ”. Our
approach overcomes these issues by relying on a template based
approach that hides AOP technology, providing a model to compose
these templates and providing templates to explicitly address data
distributions and moves. Separating transformations of control flow
from data view makes it more manageable to plug parallelisation
into legacy code as in the LUFact.
Java-based skeleton approaches [5][6] are an object-oriented
alternative to pluggable parallelisation. These systems provide a set
of high-level patterns to implement common parallelisation
strategies. Parallelisation is performed “from inside to outside”
resulting in invasive and non-reversible changes to the base code.
This results in a weak support for legacy code and scientific codes
become dependent on a specific parallelisation strategy. As a
consequence skeleton systems do not promote a so clear separation
between domain-specific code and parallelisation issues. Moreover,
there is no support for “sequential like” style: programmers build
parallel applications by composing provided skeletons. The
proposed approach follows a different philosophy: domain
specialists develop their code in a traditional manner and specialists
in parallel computing work on pluggable parallelisation issues that
enable codes to take advantage of parallel systems.

6. CONCLUSION
This paper proposes an approach to develop parallel applications by
plugging transformations into “sequential like” code. Code
transformations are specified through templates that can be
composed to implement more complex patterns. The approach
promotes the separation of the control from the data view through
the use of a specific set of templates for each purpose.
This approach is able to support a “sequential like” style of
programming and to support parallelisation of legacy code by
plugging parallelisation issues, requiring fewer changes than
competitive approaches. In cases where code re-factorings are
necessary, scientific code remains “sequential like” (e.g., domain
specific code does not become dependent of the parallelisation,
being able to run when patterns are unplugged).
Future work includes applying this technique to codes that require a
larger amount of parallel code when moving from sequential to

parallel (e.g., parallel sorting), to address other kinds of applications,
such as pointer based structures (e.g., graphs) and to investigate how
to provide contracts between domain specific code and pluggable
parallelisation.

7. ACKNOWLEDGMENTS
This work was supported by AspectGrid (GRID/GRI/81880/2006)
and PRIA (UTAustin/CA/0056/2008) funded by Portuguese FCT
and European funds (FEDER).

8. REFERENCES
[1] Baduel, L., Baude, F., Caromel, D., Object-Oriented SPMD,

IEEE CCGrid2005, Cardiff, May 2005
[2] Bornemann, M., Nieuwpoort, M., Kielmann T., MPJ/Ibis: a

Flexible and Efficient Message Passing Platform for Java,
EuroPVM/MPI 2005, Sorrento, Italy, September 2005.

[3] Caromel, D., Towards a Method of Object-Oriented
Concurrent Programming, Communications of the ACM, 36, 9,
Sept. 1993.

[4] Cunha,C., Sobral J., Monteiro M., Reusable Implementations
of Concurrency Patterns and Mechanisms using Aspect-
Oriented Programming, AOSD’06, Bonn, March 2006.

[5] Danelutto, M., Teti, P., An advanced environment supporting
structured parallel programming. Java, FGCS 19 2003

[6] Fernando, J., Sobral, J., Proenca, A., JaSkel: A Java Skeleton-
Based Framework for Structured Cluster and Grid Computing,
CCGrid'06, Singapore, May 2006

[7] Hannemann, J., Kiczales, G., Design Pattern implementation in
Java and in AspectJ, OOPSLA 2002, Seattle, USA, November
2002

[8] Harbulot, B., Gurd, J., Using AspectJ to Separate Concerns in
Parallel Scientific Java Code, AOSD 2004, ACM Press,
Lancaster, UK, March 2004

[9] Harbulot, B., Gurd, J., A Join Point for Loops in AspectJ,
AOSD’06, Bonn, Germany, March 2006.

[10] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J., Irwin, J., Aspect-Oriented Programming.
ECOOP’97, LNCS, Jyväskylä, Finland, June 1997

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W. G., An Overview of AspectJ. ECOOP 2001,
LNCS, Budapest, Hungary, June 2001

[12] Lee, D., A Java fork/join framework, Java Grande 2000
[13] Maia, M., Maia, P., Mendonça, N., Andrade, R., An Aspect-

Oriented Programming Model for Bag-of-Tasks Grid
Applications, IEEE CCGrid 07, 2007

[14] Nieuwpoort, R., Kielmann, T., Bal, H., Satin: Efficient Parallel
Divide-and-Conquer in Java. Euro-Par 2000

[15] Smith, A., Bull, J., Obdrzálek, J., A Parallel Java Grande
Benchmark Suite, SC 2001, Denver, USA, November 2001

[16] Sobral, J., Incrementally Developing Parallel Applications with
AspectJ, IEEE IPDPS’06, Rhodes, Greece, April 2006

[17] Sobral, J., Cunha, C., Monteiro, M., Aspect-Oriented
Pluggable Support for Parallel Computing, VecPar’06, LNCS,
Rio de Janeiro, Brasil, June 2006

[18] Sobral, J., Monteiro, M., A Domain-Specific Language for
Parallel and Grid Computing, DSAL08, Belgium, April 2008

[19] http://www.kclee.de/clemens/java/javancss/

20

