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ABSTRACT 
This paper presents the concept of pluggable parallelisation that 
allows scientists to develop “sequential like” codes that can take 
advantage of multi-core, cluster and grid systems. In this 
approach parallel applications are developed by plugging 
parallelisation patterns/idioms into scientific codes (e.g., 
“sequential like” codes), softening the move from sequential to 
parallel programming and promoting the separation between 
domain specific code and parallelisation issues. Pluggable 
parallelisation combines three characteristics: 1) parallelisation is 
performed from “outside to inside”, localising parallelisation 
concerns into well defined modules, reducing changes required to 
the domain specific code and avoiding invasive parallelisation of 
base code; 2) control view is separated from data view promoting 
a stronger separation of concerns which improves reuse of 
parallelisation concerns across platforms and enables fine-grained 
refinements; and 3) abstractions can be composed, supporting the 
development of more complex patterns based on fine-grained 
features. This paper presents the concept of pluggable 
parallelisation and shows how some well-known parallelisation 
strategies can be implemented in this approach. Results show that 
this is a feasible approach and performance is competitive with 
traditional parallel programming. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming - 
Parallel programming; D.3.3 [Programming Languages]: 
Language Constructs and Features – Concurrent programming 
structures. 

General Terms 
Performance, Design and Languages. 

Keywords 
Parallel programming, non-invasive parallelisation, separation of 
concerns. 

1. INTRODUCTION 
Parallel computing is being pushed to the mainstream by the 
advent of multi-core machines and grid systems. The number of 
cores on every desktop machine (currently 2 or 4 cores per 
machine) will keep increasing. This requires a massive migration 
of current sequential applications to this new reality, introducing a 
strong pressure for new parallel programming paradigms that can 
help on this move. 

public class JGFLUFactBench  
          extends Linpack implements JGFSection2{ 
 
  public static int nprocess; 
  public static int rank; 
 
  public void JGFinitialise() throws MPIException{ 
    int r_count,z_count; 
    int p_ldaa; 
    n = datasizes[size];  
    ipvt = new int [ldaa]; 
    p_ldaa = (ldaa + nprocess - 1) / nprocess; 
    rem_p_ldaa = (p_ldaa*nprocess) - ldaa; 
    /* ... */ 
 
    if(rank==0) { 
      long nl = (long) n; 
      ops = (2.0*(nl*nl*nl))/3.0 + 2.0*(nl*nl); 
      norma = matgen(a,lda,n,b); 
    } 
 
    if(rank==0) { 
      for(int i=0;i<a.length;i++){ 
       if(r_count==0) { 
         for(int l=0;l<a[0].length;l++){ 
           buf_a[z_count][l] = a[i][l];  
         } 
         z_count++; 
       } else { 
         MPI.Send(a,i,1,MPI.OBJECT,r_count,10); 
       } 
       buf_list[i] = z_count - 1; 
      } 
    } else {  // rank!=0 
      for(int i=0;i<real_p_ldaa;i++){ 
        MPI.Recv(buf_a,i,1,MPI.OBJECT,0,10); 
      } 
    } 
  } 

Figure 1. LuFact MPI-Based parallelisation 
The paradigm with the highest probability of success would 
resemble traditional sequential programming and should 
maximise reuse of existing sequential codes. Unfortunately, 
currently most parallel programming languages require extensive 
and invasive source code changes to enable codes to take 
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advantage of parallel systems. For instance, in MPI the 
programmer must insert code to perform data partitioning among 
MPI processes and to coordinate the execution and data moves 
among processes. As a consequence, parallelisation issues 
become tangled with domain specific code [8] and changes are 
non-reversible. In large scale applications this can limit 
application modularity and maintainability, and consequently, the 
ability to evolve application code in an independent manner. 

We illustrate these issues by presenting code a snippet of the JGF 
MPI implementation of the LuFact [15] (Figure 1), a Java version 
of the popular Linpack benchmark. 

The code is shown in three colours (fonts): i) the basic 
functionality (LuFact) in black; ii) MPI control related issues in 
red (grey) and iii) data partition issues in blue (italic). These three 
concerns are tangled, harming modularity, understandability, etc. 

This paper proposes an approach that addresses these issues by 
supporting a traditional “sequential like” style of programming. 
Parallelisation is performed by “plugging” a set of parallelisation 
patterns/idioms that transform “sequential like” codes to take 
advantage of parallel systems (e.g., parallel codes). This approach 
modularises parallelisation issues into a set of transformations, 
enabling independent development of domain-specific and 
parallelisation issues, and reducing changes required to the basic 
code. These are key features to promote a broader usage of 
parallel processing, as most software companies will only have a 
few experts in parallel computing, although most programmers 
would be more familiar with a “sequential like” style of 
programming. Moreover, it promotes reuse of legacy code.  

This article is organised as follows. Section 2 presents the 
pluggable parallelisation approach. Section 3 performs an 
evaluation of this approach with two case studies, including 
performance results. Section 4 discusses the limitations of the 
approach and section 5 presents related work. Section 6 concludes 
the paper presenting directions for further research. 

2. PLUGGABLE PARALLELISATION 
Pluggable parallelisation addresses the development of parallel 
applications by providing abstractions to transform 
domain-specific code into parallel code. The process starts with a 
“sequential like” code that is transformed into a parallel code by 
using a set of parallel programming abstractions. In this process 
the programmer can also provide additional parallelisation 
specific code. 
This “transformation oriented” view presents several advantages 
over more traditional approaches. Parallelisation is performed 
“from outside to inside” minimising changes required to the base 
code and can be applied to legacy code that cannot be made 
parallel with parallelising compilers. Moreover, keeping these 
transformations in separate modules enables independent 
development: it is easier to maintain/change parallel code and 
programmers that write domain-specific code can be oblivious of 
parallelisation issues. 
This approach introduces several questions: 
1) What kind of transformations to support? 
2) How to specify transformations? 

3) How to combine transformations to achieve more complex 
ones? 
4) How to express common parallel patterns in this approach? 
5) What are the main limitations of this type of approach? 
The next sub-section contributes to answer to the first and second 
questions. The following sub-sections focus on the third and 
fourth questions. The discussion and related work sections discuss 
the main limitations of this approach. 

2.1 Parallel Programming by Transformation 
For several years we have been converting sequential Java codes 
to their equivalent parallel counterparts. One interesting source of 
case studies was the Java Grande Forum (JGF) benchmark [15]. 
This benchmark includes well known computational kernels that 
exist in many scientific codes (some kernels were simply taken 
from the SciMark benchmark). This benchmark includes parallel 
versions (e.g., MPI based) of most of these well known sequential 
codes. The main question was: how could a programmer 
transform sequential versions into parallel equivalents without 
directly inserting parallelisation code into the source, avoiding 
tangling presented in Figure 1? 
Parallelisation of the JGF benchmarks follows a SPMD model: all 
nodes execute the same sequential code, but each node works on a 
different part of the data and certain operations are performed by 
a subset of nodes. Additional data moves among nodes may be 
required, if each part of data can not be processed independently 
from others. This “natural style” of moving from sequential to 
parallel codes was confirmed by requesting undergraduate 
students, in parallel computing courses, to develop parallel 
versions of sequential Java codes. They tended to follow an 
approach similar to the one used in the JGF benchmarks. 
Based on this set of experiences, we devised a set of programming 
abstractions that could help to perform code transformations for 
parallelisation. Identified transformations specify actions like: 
1. Block B of sequential code executes on all nodes; 
2. Block B of code executes on nodes N where condition C holds; 
3. Data structure D is partitioned among nodes using strategy S; 
4. Update remote data at execution point E. 
Non-invasively applying these transformations to scientific codes 
requires a way to identify, from outside (i.e., through a unique 
global name), blocks of code B, data structures D and execution 
points E. For this purpose we resorted to an object-oriented 
language as the basic language. Object-oriented languages offer a 
richer set of abstractions (e.g., classes, methods, fields), besides 
traditional structured programming abstractions. As a 
consequence, they provide a richer set of alternatives to identify 
program elements. 
We implement transformations upon the concept of object 
aggregate [1][17]. Object aggregates are objects that are 
replicated on all nodes (i.e., each node has a local instance of the 
object). The idea is to transform object creations in the sequential 
code into creations of object aggregates in the parallel code (i.e., 
transformed code). Subsequent method calls (originally in the 
sequential code) can be performed by the local aggregate 
representative (by default) or by all elements of the aggregate. It 
is possible to restrict method executions to specific aggregate 
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elements. For that purpose a condition can be provided that can 
depend on the node identifier, method parameters and object data.  
Operations of type 1) and 2) can be mapped into method 
executions that are (conditionally) executed by aggregate 
elements. Operations of type 3) and 4) are expressed by 
operations controlling how data stored in objects is distributed / 
updated among aggregate elements at specific execution points. 
Operations of type 1) and 2) manage task coordination (i.e., 
control view) and operations of type 3) and 4) manage data 
distribution and dependence issues (i.e., data distribution view). 
The proposed approach promotes the management of these issues 
as separate concerns, by managing these two views as separate as 
possible. The control flow view specifies how a sequential control 
flow is transformed into multiple control flows and how to 
coordinate parallel control flows. Data distributions specify how 
data is partitioned among parallel tasks and what data moves are 
required to keep data consistent. This separation introduces 
several benefits: 1) it allows a more incremental development and 
understanding (e.g. first understanding the control flow and then 
the data distribution strategy); 2) it is conceptually possible to 
change one independently of the other, although we foresee that 
the common case will be changing data distributions (e.g., some 
parallelisation patterns differ only in data dependencies, requiring 
specific data distributions and moves). 
Figure 2 illustrates this model. The sequential code creates a 
single object instance obj1. Method call a is performed on this 
instance, which issues a method call b to the same instance. After 
applying transformations of type 1), the resulting parallel code 
creates an aggregate of obj1 (one object instance per node) and 
call a executes on all nodes. Method call b is also issued on all 
nodes, since it is nested inside call a. But, in this specific 
example, we explicitly restricted the execution of call b to the 
object on node 0, by composing a transformation of type 2). 

 
Figure 2. Parallelisation process based on object aggregates 

By default each object aggregate manages its data in an 
independent manner (i.e., each aggregate has a local copy of the 
data). The same holds for static data allocated in static classes. 
We support several transformations that can change the default 
behaviour. The idea is to specify how data is distributed among 
aggregate elements. We support BLOCK and CYCLIC data 
partitions and global and local view of data. In the former, data 
indexes refer to the local partition, in the latter data indexes are 
relative to the global data structure. Figure 3 illustrates this 
transformation. There are transformations to inject code to change 
from one view to the other, during execution, and to update 
remote data. Moreover, since we start with a sequential code we 
allocate a shadow of the data in node 0. This is usually required 
since data initialisation performed in the sequential code usually 
needs to be performed in node with identification 0. 

 
Figure 3. Global and local view of data 

We also support non-SPMD code through remote objects and 
asynchronous method calls. In the former, an object in the 
sequential code can be placed on a remote node (chosen by the 
run-time system or specified by the programmer). In the latter, the 
method call is performed in a new thread of control. 
The remainder of this section gives an overview of the 
template-based syntax used to express these transformations and 
presents common transformations. The two next sub-sections 
overview currently supported control and data transformations. 
The last sub-section discusses cases where these two views are 
more tightly coupled and presents sample code. 

2.1.1 Template-Based Syntax 
Code transformations are expressed in a template-based syntax 
(similar to C++ templates). Transformations can be applied to 
classes, methods (including parameters and return values) and 
data fields: these are the types of parameters in templates. A 
template-based syntax also supports the specification of 
composition of abstractions through template nesting (described 
in subsection 2.2). Table 1 presents relevant transformations 
currently supported. 

Table 1. Transformations currently supported 

Transformation Description 
Separate<T> Instances of class T can be created 

on any cluster node 

GridSeparate<T> Instances of class T can be created 
on any grid node 

Replicate<T> Create an instance to class T on 
each available resource (e.g. node) 

Broadcast<T,M> Execute method call M on all 
aggregate elements (e.g., nodes) 

CondExe<T,M,C> Restrict execution of method M to 
places where condition C holds 

Async<T,M,E> Spawn a new thread to execute M, 
wait for the spawned thread at E 

Partitioned<T,D, 
[BLOCK,CYCLE]> 

Distribute the data field D, of class 
T, using a partition strategy 

ChangeView<T,E,D, 
[Local|Global]> 

Change field D from/to local/global 
view at execution point E 

Scatter*/Gather* 
<T,E,D>or<T,E,M> 

Update copy of field D or method 
parameter M at execution point E 

Node 0 Node 2 Node 1 

Global view

Seq. code Parallel code

Node 0 Node 2 Node 1 

Local view 

obj1obj1 

call a 

Node 0 

call b call b call b 

call acall a 

call a 

obj1 

Seq. code 

call b

Parallel code 

obj1 

Node 1 Node 2 
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Transformations have the following generic syntax: 
  TemplateName< 
      Class T  
      [,Method M]* 
      [,ExecutionPoint E]* 
      [,Condition C] 
      [,DataField D] 
  > 
Class T specifies the class where the transformation applies, 
replacing instances of class T by a new type compatible version 
of the class. One example is Replicate<T> that specifies that one 
instance of class T should be created on each available computing 
resource (e.g., class T becomes an object aggregate). For 
compactness, in this article, we generally omit template parameter 
class T, although it is important to understand that transformations 
generally change the implementation of class T, so this parameter 
must be explicitly provided. 
Method M and ExecutionPoint E are syntactically similar (both 
specify method executions) but they are used for different 
purposes. The former is used to specify blocks of code (e.g., a 
method) and the latter is used to specify execution points to plug 
code generated by the transformation. One example is the 
Async<T,M,E> template, that spawns a new thread to execute 
method M and waits for thread completion on execution point E 
(generally another method execution). 
Parallelisation patterns may require case specific code. Method M 
can also be used for this purpose. In this case, the definition of M 
is given along with the template, instead of being defined in the 
sequential code. 
Condition C specifies that a transformation takes place only on 
certain conditions. This is particularly important in SPMD code 
since some operations are frequently performed by a subset of 
tasks. One example is CondExe<class, “someMethod”, 
“iAmRoot?”>, which just executes someMethod if calls to 
iAmRoot return true. 

2.1.2 Control Flow Transformations 
These intend to transform a single control flow in the “sequential 
like” code into multiple control flows running in parallel. The 
most basic transformation is to replicate the same task on multiple 
nodes, which is achieved using Broadcast<T, M>. This executes 
the method M in all resources (e.g., nodes). It can only be applied 
to static methods. For non-static methods an additional 
Replicate<T> is required to create an instance of class T on every 
node before performing the broadcast. A more loosely coupled 
task creation can be specified by Async<T, M>, which spawns a 
new task to execute the method M. Some transformations require 
more than one method parameter. For instance, a refined Async 
can specify a second method (i.e., execution point) to wait for the 
spawned threads on a different execution point (e.g., Async<T, M, 
E>). Two other currently supported templates have the purpose of 
limiting/synchronising the execution of parallel control flows. 
Barrier<T, E> inserts a barrier at the specified execution point. 
CondExe<T, M, C> limits execution of method M to aggregate 
elements (or compute nodes) where condition C holds. Note that 
Replicate<T>, Broadcast<T, M> and CondExe<T, M, C> 
implement transformations of type 1 and 2 presented in section 
2.1. 

2.1.3 Data Distribution View 
Data transformations support the specification of data partitions 
and updates among nodes (or aggregate elements, if the data is 
not stored in static fields). For this purpose we provide a set of 
pre-defined data partitions, including block and cyclic, that can be 
used of-the-shelf or extended to address application specific 
needs. Partitioned<T, D, partitionType> specifies that data field 
D will be partitioned among aggregate elements according to 
partitionType policy. The point where data is actually scattered or 
gathered (or reduced) is specified using templates Scatter<T, E, 
D> and Gather <T, E, D>. The reduce template requires an 
additional parameter specifying the reduce operator (this is 
another case where a method can be provided along with the 
template specification). These operations implement 
transformations of type 3 and 4 introduced in section 2.1. 
Conceptually, it is possible to provide a set of collective 
operations equivalent to MPI. The difference is that these manage 
information stored in class/object fields and the template 
parameter specifies the place in the code where the operation is 
inserted (by means of execution point E). More fine-grained data 
moves are supported by developing case specific templates 
(currently we must resort to AspectJ [11] to write these 
templates). One of such examples is the use of point-to-point 
messages (e.g., the JGF SOR benchmark). In that case a new 
template can be developed to perform the required data move. 
Our library of data partitions provides functions to access to local 
data (see Figure 3) within these templates. 

2.1.4 Interplay of Transformations 
Control flow transformations keep the data centralised, 
performing data initialisation at the root node. This behaviour is 
modified in three ways. 1) if data is initialised in an object 
constructor (e.g., the Replicate template implicitly calls the object 
initialisation method on each aggregate member); 2) when some 
data structure is used as a method parameter (e.g., in the 
Broadcast template all data is sent by value); 3) when data 
initialisation methods are broadcasted (or called from a 
broadcasted method). 
Figure 4 illustrates how data distribution transformations change 
this default behavior in the JGF Series benchmark. 
Transformations are specified into a separate module, but for 
compactness and understandability purposes these were inserted 
as comments in the basic code, showing where the transformation 
will inject the parallelisation code. 
class SomeClass { 
... 
  // Partitioned<SomeClass,TestArray,BLOCK> 
  double TestArray[] = new ... 
... 
  void Do() { 
    // ScatterBefore<SomeClass,Do(),TestArray> 
    // ChangeView<SomeClass,Do(),TestArray,LOCAL> 
    ... 
    for (int i = 0; i < TestArray.length; i++) 
      TestArray[i] = someComputation(/*.. */); 
    } 
    // GatherAfter<SomeClass,Do(),TestArray> 
    // ChangeView<SomeClass,Do(),TestArray,GLOBAL> 
  } 
} 

Figure 4. JGF Series data distribution view  
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The Partitioned<SomeClass,TestArray,BLOCK> injects code to 
support the block-wise distribution of TestArray among aggregate 
elements. ScatterBefore<SomeClass,Do(),TestArray> injects 
code to update each partition before the execution of method Do 
(in this case, the template injects a MPI_Scatter function in the 
sequential code). ChangeView<…,Do(),TestArray,LOCAL> 
makes each process to switch to the local view of data. By 
changing to the local data view, after that execution point, the 
variable TestArray refers to the local block of data (e.g., the 
TestArray.length is the size of the local block). The reverse 
operations are performed at the end of method Do: data is again 
collected in the master and the view is changed to global. Note 
that there are means to change the data view independently from 
the scatter and gather operations. This allows performing 
scatter/gather and change view operations in different execution 
points, which, in some cases, may lead to more efficient 
programs, by scattering/gathering the data before it is actually 
needed. 
Figure 5 presents the complete example, now including the 
control view. In this case, SomeClass is transformed into an object 
aggregate (by applying the Replicate template) and calls to the Do 
method are executed by all members of the aggregate (by 
applying the Broadcast template). An additional Separate 
transformation  can distribute instances of SomeClass across 
nodes of a cluster. 
Core functionality 
class SomeClass { 
  double[] TestArray = ... // initialise array 
  void Do() { 
    for (int i = 0; i < TestArray.length; i++) 
      TestArray[i] = someComputation(/*.. */); 
  } 
} 
Parallelisation (data view) 
Partitioned<SomeClass,TestArray,BLOCK> 
ScatterBefore<SomeClass,Do,TestArray> 
GatherAfter<SomeClass,Do,TestArray>  
Parallelisation (control view) 
Replicate<SomeClass> 
// all aggregate elements execute method Do 
Broadcast<SomeClass,Do> 

Figure 5. Example of separation of data and control view. 
 

2.2 Composing Transformations 
Composition issues can arise when multiple transformations have 
impact in the same place in the sequential code (e.g., a method). 
In addition, building complex parallelisation and the ability to 
extend existing templates requires the composition of several code 
transformations. 
The composition model builds upon an incremental development 
process: each transformation generates new code that can be 
transformed by another template. The key point is that each 
template might have impact on additional methods or execution 
points introduced by transformations previously applied. This 
enables the generation of different parallel code by composing 
transformations in different orders. Thus, a small set of templates 
can be used to generate a larger range of parallel programs. 
Moreover, additional tools can be provided to ensure that only 
valid compositions are allowed.  
Figure 6 presents the code generated (for a shared memory 
machine) by applying a sequence of Replicate, Broadcast and 

Async transformations. Each call to someMethod is executed by a 
new thread on each aggregate element.  

“Sequential like” code 
 
public class SomeClass { 
   void someMethod () { … } 
} 
 
SomeClass f = new SomeClass(); 
f.someMethod(); 

Generated parallel code 

... 
for (int i=0; i<numOfReplicas; i++) { 
  agg.add(new SomeClass());    // Replicate 
  new Thread() {               // Async 
    void run() { 
      agg.elementAt(i).someMethod(); 
    } 
  }.start(); 
} 

Figure 6 - Code resulting from the application of the sequence 
of transformations: Replicate<SomeClass>, 

Broadcast<SomeClass, ”someMethod”> and Async< 
SomeClass, ”someMethod”>. 

In this case, the Replicate template injects code to create an 
aggregate of instances of SomeClass. The default behaviour 
would be to issue the call to someMethod only in the aggregate 
representative. By applying the Broadcast transformation to 
someMethod it will be executed in all aggregate members. The 
Async template acts upon the result of the Broadcast template, by 
issuing all method calls in a new thread (i.e., it also has impact on 
method calls generated by the Broadcast template). 
A different parallel program can be generated by changing the 
order of Broadcast and Async transformations. In that case, a 
single thread will sequentially perform the call to each aggregate 
element, since first the asynchronous call is applied and then the 
broadcast. 
A composition of transformations is specified by nesting 
templates. The composition in the example of Figure 6 would be 
specified as Async<Broadcast<Replicate<SomeClass>,…>,…>). 
This syntax may become cumbersome for complex compositions. 
One problem is the lack of line breaks. This issue is solved by 
introducing a syntax that allows to store each program 
transformation into a variable and introducing one additional 
template parameter that specifies the program where the 
transformation applies. A special name (e.g., MAIN) represents 
the original “sequential like” code. Under this approach, we could 
write the transformation of Figure 6 as: 
   prog1 = Replicate<MAIN,SomeClass> 
   prog2 = Broadcast<prog1,SomeClass,”someMethod”> 
   prog3 = Async<prog2,SomeClass,”someMethod”> 
This syntax introduces the possibility to specify a transformation 
tree (always starting in the “sequential like” program) instead of a 
single transformation chain. This allows a partial ordering of 
transformations (enough for many applications). Transformations 
acting on common methods/execution points should be 
completely ordered. Otherwise, the composition may produce an 
unpredictable result as it must select an order to apply 
transformations (e.g., the final result could be implementation 
dependent). 
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Template extensibility is also based on composition of templates 
(although we also provide means to build a new template from 
scratch, by using code templates in AspectJ [11]). To extend a 
template we compose additional functionality to that template. 
For instance, we could define a new template to implement a 
Farm based on Replicate, Scatter and Gather: 
 Farm<Class T, Method compute, DataField field>{ 
  prog1= Replicate<T> 
  prog2 = Broadcast<prog1, T, compute> 
  prog3 = Scatter<prog2, T, compute, field> 
  prog4 = Gather<prog3, T, compute, field> 
 } 
The last composition issue is related to the generation of code for 
specific target platforms. The proposed approach targets the 
generation of efficient code for a wide range of architectures, 
including multi-core, clusters, computational grids and systems 
composed of combinations of these. One common way to take 
advantage of clusters of multi-core machines is to use a mix of 
MPI and OpenMP. For this purpose the approach supports the 
Separate template to specify cluster-aware transformations and 
GridSeparate to specify transformations for computational grids. 
For instance, an aggregate of objects distributed through the 
nodes of a cluster, with a second level of inner aggregates can be 
specified by Replicate<Separate<Replicate <SomeClass>>>. 
This inner aggregate can more efficiently take advantage of 
multi-core processors by communicating through shared memory. 

2.3 Expressing Common Patterns 
This section revises some well known parallelisation patterns and 
outlines how they can be supported in the proposed approach. 
Patterns are directives, providing guidelines for solving classes of 
parallelisation problems. They are collections of solutions and 
there is no “one solution fits all”. The proposed approach does not 
force a particular solution for each problem. Instead, it provides a 
set of parallelisation patterns that can be composed to address 
each specific case. The purpose of this section is to illustrate how 
to implement one specific variant of each of these patterns, 
namely, it shows how Farm, Pipeline, Divide & Conquer and 
Heartbeat can be plugged into “sequential-like” codes. 

2.3.1 Farm 
In the farm parallelisation the data is divided into independent parts, 
which are processed in parallel by several workers, and joined after 
processing. 
The farm pattern can be plugged into “sequential like” code by 
transforming a single object instance into an aggregate of objects. 
This requires the specification of the class to be replicated, the 
method to process each task and split and merge functions (e.g., 
Farm<Class T, Method compute, Method split, Method join>). It 
can be implemented by composing Replicate with Broadcast, and 
providing methods to split and join the data, in a similar way to 
Scatter and Gather functions. However, in this case the Scatter and 
Gather act on method parameters and return value, instead of acting 
on data stored in object fields (although using an object field to store 
the data is also possible, as shown in section 2.2). 
Figure 7 shows a farm pattern applied to the JGF RayTracer. Class 
T was replaced by the RayTracer class and the compute method 
becomes calls to render method. 

Figure 7 - JGF RayTracer parallelisation. 
This case shows how it is possible to provide case specific code to 
inject in the parallel code. Methods split and join, defined in the 
parallelisation, specify how to divide the Interval method parameter 
and how to merge the resulting integer array. 

2.3.2 Pipeline 
A pipeline consists of a chain of processes working in parallel on 
different parts of data. Each part of data is successively processed 
by all processes in the chain. 
A pipeline can be plugged into sequential code by replacing an 
instance of a class by a pipeline of elements of the same class. 
Additional split and join methods can be used to divide the original 
data into independent pieces and to merge the processed pieces 
(e.g., Pipe<Class T, Method compute[, Method split, Method 
join]>. Another way to implement a pipeline, when the sequential 
code includes a chain of method calls, is to use the Async pattern. 

2.3.3 Divide & Conquer 
 This pattern addresses problems that are recursively divided into 
simpler sub-problems that can be solved in parallel. The “sequential 
like” code where the pattern applies can be intrinsically divide & 
conquer (e.g., problems that are sequentially solved in a recursive 
manner). In this case, the parallelisation pattern spawns a new 
parallel task on each recursive call, using the Async template (with 
future type synchronisation [3], an approach similar to fork & join 
frameworks [12][14], but avoiding invasive changes in sequential 
code).  
We illustrate this pattern (Figure 8) with the classic Fibonacci 
function (this is an example of how the proposed approach can 
support non-SPMD code). 

Figure 8 - Parallel computation of Fibonacci numbers. 

Core functionality 
RayTracer rt = new RayTracer(); 
Interval interval = new Interval(0,500); 
int Result[] = rt.render(interval); 
Farm parallelisation 
Vector<Interval> split(Interval in) { 
   … // split in into sub-intervals  
} 
int[] join(Vector<int[] in) { 
   … // join rendered sub-images 
} 
Separate<Farm<RayTracer, render, split, join> > 

Core functionality 
public class Fib { 
  long value; 
  public Fib(long val) { value = val; } 
  public long compute() { 
    if (value <=1) return(value); 
    else{ 
      Fib f1 = new Fib(value-1); 
      Fib f2 = new Fib(value-2); 
      Long r1 = f1.compute(); 
      Long r2 = f2.compute(); 
      return(r1.longValue()+r2.longValue()); 
    } 
  } 
} 
Parallelisation 
Async<Fib,”compute”,”Long.longValue”> 
Separate<Fib> 
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Calls to compute methods are made asynchronously through the 
Async template. Calls to Long.longValue (i.e., the unboxing function 
that transforms an object Long into a long value) provide the 
execution point where a fake return value is replaced by the result of 
the computation. We also specify that instances of the Fib class can 
be placed on remote resources, by making them Separate objects, 
otherwise the application would run on a single machine. 
A variant of Divide & Conquer is the search for the best solution 
(e.g., N-Queens). Recursive calls are only issued if they could lead 
to a better solution. This data dependence can be addressed by 
additionally plugging appropriate template to conditionally 
Broadcast data field at certain execution points. 

Figure 9 – JGF LuFact parallelisation. 
 

2.3.4  Heartbeat 
Heartbeat patterns are generally applied to problems solved 
iteratively. This type of pattern is addressed by executing (i.e. 
broadcasting) the method that computes iterations on all nodes. 
Additional data moves (at each iteration) can be injected into the 
sequential code through data distribution transformations. 
The JGF LuFact example of a typical heartbeat application (Figure 
9), it is a Java version of the popular Linpack benchmark. In this 
example we extracted three blocks of code into methods in order to 
support conditional execution by means of CondExe. Before and 
after executing the dgefa method we need to scatter and gather 
values of matrix a. Note that in this case a method that returns a 
value is conditionally executed. That value is automatically 
broadcasted to all aggregate elements (e.g., by CondExe).  
The parallelisation of the LUFact is very close to the parallelisation 
of the computation of All-Pairs Shortest Paths (ASP) [2]. This 
makes it attractive to develop a template that can be used in both 
cases. Figure 10 presents that template. It creates an aggregate of 
ClassT, broadcast execution of method2BCast to all aggregate 
elements, conditionally executes method2CEx when condEx is true 
and field2Dist is distributed among aggregate elements using the 
partType. This template is enough for the ASP application, but for 
LUFact it only implements statements in italics from Figure 9. As 
such, in this case, three additional condExe templates are also 
applied. 
HearbeatBC<ClassT, method2BCast,  
   method2CEx, condEx, field2Dist, partType> { 
 
 Separate<Replicate<ClassT>> 
 Broadcast<ClassT, method2BCast> 
 CondExe<ClassT, method2CEx, condEx> 
   
 Partitioned< field2Dist, partType > 
 ScatterBefore<ClassT, method2BCast,field2Dist> 
 GatherAfter< ClassT, method2BCast, field2Dist> 
} 

Figure 10 – Template for JGF LuFact and ASP parallelisation. 
Another important point about code in Figure 9 is that a shared 
memory version of the LUFact can be efficiently derived by 
ignoring transformations that implement the data distribution. 

3. PERFORMANCE EVALUATION 
This section evaluates the proposed approach with two case studies 
from the Java Grande Forum (JGF) [15] and presents performance 
results. JGF includes benchmarks in sequential, concurrent (i.e., 
Java threads) and parallel (Java MPI) variants. This section 
describes developed parallel versions of Crypt and LU factorisation, 
which are in the Farm and Heartbeat category. Parallel versions of 
the other benchmarks were developed in a similar way, as they are 
also in these pattern categories. 
The Crypt benchmark encrypts and decrypts a byte array. The 
processing is performed in the method Do of IDEATest. This 
application is parallelised by processing parts of the byte array in 
parallel, which was performed with the Replicate template to create 
one instance of IDEATest on each node and executing the method 
Do on all nodes. Scatter and Gather templates divide the byte array 
among workers (field plain1) and gather the processed results (field 
plain2). The CondExe template was used to ensure that some data 
initialisations were performed only at node 0. 

Core functionality 
public class Linpack { 
... 
 final int dgefa(double a[][],  
         int lda, int n, int ipvt[]) { 
  double[] col_k, col_j; 
  double t; 
  int j, k, kp1, l, nm1; 
  int info; 
 
  // gaussian elimination with partial pivoting 
  info=0; 
... 
    // find l = pivot index 
    l=idamax(n-k, col_k, k, 1)+k; 
    ipvt[k]=l; 
 
    col_k=calcMults(col_k, n, k, kp1, l); 
    if(col_k[l]!=0)    { 
      for(j=kp1; j<n; j++) 
       reduceColumn(a, n, col_k, j, k, kp1, l); 
    } 
...  
  info=calcInfo(a, n, info); 
  return info; 
 } 
} 
Parallelisation code (control view) 
Separate<Replicate<Linpack>> 
Broadcast<Linpack, 
  'int dgefa(double[][], int, int, int[])'> 
CondExe<Linpack, 
  'double[] calcMults(double[] col_k, int n, 
       int k, int kp1, int l)', 'a.getPart(k)'> 
CondExe<Linpack, 
  'int calcInfo(double[][] a, int n,  
                   int info)','a.getPart(n-1)'> 
CondExe<Linpack, 
  'int idamax(int n,double dx[],int dx_off, 
                int incx)','a.getPart(dx_off)'> 
CondExe<Linpack, 
  'void reduceColumn(double[][] a, int n, 
               double[] col_k, int j, int k, 
               int kp1, int l)','a.getPart(j)'> 
Parallelisation code (data view) 
Partitioned<'Linpack.a',[CYCLE][*]> 
ScatterBefore<Linpack, 
  'int dgefa(double[][], int, int, int[])', 
  'double[][] Linpack.a'> 
GatherAfter<Linpack, 
  'int dgefa(double[][], int, int, int[])', 
  'double[][] Linpack.a'> 

17



The LUFact performs a LU factorisation through an iterative 
algorithm (e.g., Heartbeat), requiring the broadcast of a matrix 
column at each iteration (different for each iteration). We followed a 
similar approach to the Crypt benchmark, by replicating instances of 
class Linpack and executing the dgefa method on all nodes. This 
example was presented in Figure 9. 
Performance benchmarks were performed by comparing execution 
times of parallel versions built with this approach and equivalent 
hand written parallel versions (MPI based taken from JGF). Table 2 
presents the speed-up, relative to the sequential versions, on a 
cluster of 8 bi-Xeon 5130 machines (a total of 32 cores, 4 per 
machine) and JDK 1.5_3. The first four benchmarks are from JGF 
(SOR is red-black successive-over relation, another typical heartbeat 
and the RayTracer is a typical farm). 

Table 2. Speed-up of hand written (HW) parallel applications 
and built using pluggable parallelisation (PP) on a cluster 

4 cores 16 cores 32 cores 
Application 

HW PP HW PP HW PP 

CryptC 3.54 3.53 7.80 7.56 9.56 9.27

SeriesC 3.11 3.13 12.26 12.29 24.42 24.61

SparseMatmultC 2.11 2.12 6.85 8.28 10.53 19.46

LUFactC 2.22 2.29 2.85 3.03 2.07 2.53

SORC 1.53 1.25 2.93 1.86 2.87 2.49

MDB 3.78 3.74 9.94 10.89 - -

RayTracerB 3.82 3.88 14.13 14.38 25.64 26.16

 
Overheads introduced by our approach are generally very low. 
These are due to code re-factorings (e.g, moving blocks of code to 
methods) and due to the use of AspectJ. These are generally low as 
code transformations are made at compile-time and most injected 
code can be inlined. The amount of overhead depends on method 
granularity: fewer operations executed at each intercepted execution 
point represent higher overheads. The sparse matrix multiplication 
performs better with pluggable parallelisation. Interestingly, in this 
benchmark, we simply used a standard data partition strategy that 
seems to provide some advantage over the one used in JGF. Both 
LuFact and SOR scale poorly due to communication overheads 
(both require certain amount of communication per iteration). 
Table 3 presents the execution times on machine bi-Xeon E5430 (a 
total of 8 cores). In this case hand written versions are implemented 
with Java Threads (also provided by the JGF). It should be stressed 
that shared memory implementations with pluggable patterns share 
most of the code with the distributed memory implementations and 
the “sequential like” code is the same for both versions (usually 
only data distribution issues are not included). 
In this case the performance of both versions is also very close. The 
speed-up of sparse matrix multiplication drops with 8 cores. We are 
currently investigating this issue but it is probably due to less data 
locality. There is also some performance difference in MolDyn. In 
this case the difference is due to generation of fine-grained tasks 
that impose higher overheads. 

Table 3. Speed-up of hand written (HW) parallel applications 
and built using pluggable parallelisation (PP) on a SMP 

4 cores 8 cores 
Application 

HW PP HW PP 

CryptC 3.7 4.1 7.0 7.5

SeriesC 3.4 3.7 7.9 7.9

SparseMatmultC 4.1 4.3 8.3 3.0

LUFactC 3.6 3.6 5.7 5.5

SORC 3.7 3.9 5.9 6.7

MDB 2.9 2.4 4.2 3.2

RayTracerB 3.3 3.8 7.5 7.2

4. DISCUSSION 
We start this section by comparing the proposed approach against 
current mainstream programming languages, i.e., MPI and OpenMP 
(Table 4). 

Table 4. Assessment of OpenMP, MPI and pluggable patterns  
 OpenMP MPI PP 
localised / modular 
parallelisation 

no (yes) no yes 

incremental parallelisation yes (no) no yes 

unpluggability yes no yes 

code reuse / composition 
of abstractions 

no no yes 

support for new 
abstractions 

no no yes 

support for multi-core/ 
cluster/grids 

yes/ 
no/ no 

no/ 
yes/no 

yes/ 
yes/yes 

Both OpenMP and MPI lead to tangled code (e.g., no modular 
parallelisation), however OpenMP seems better in this respect, as all 
parallelisation statements can be placed into annotations (except for 
more complex issues). The use of annotations makes it easy to 
identify parallelisation-related statements. Tangled code makes it 
hard to understand MPI programs, as each statement must be 
tracked either to domain-specific issues or to parallelisation issues. 
The proposed approach modularises parallelisation issues into 
transformations. 
Incremental parallelisation means that we can start by sequential 
code and progressively perform the parallelisation, with minor 
impact on the original code. This is supported in OpenMP by 
inserting code annotations, although, more complex issues usually 
require code re-factorings. In this matter, OpenMP and our approach 
seem to have a similar support. 
Unpluggability of parallel code is a nice property of OpenMP since 
the standard allows a compiler to ignore parallelisation directives. 
This can also be true even if the program has calls to OpenMP run-
time. The standard defines stubs for implementing these run-time 
libraries on machines that do not support OpenMP. Unpluggability 
is also supported in our approach. 
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A weak point of MPI or OpenMP is the lack of support to include 
new abstractions and to compose instances of parallelisation code 
into reusable modules. In MPI this is due to the fact that 
parallelisation code is mixed with domain specific code. In OpenMP 
this limitation is mainly due to its annotation-based nature that 
confines the set of abstractions to the set provided by the language 
and pre-empts the addition of parallelisation specific code in a 
modular way. 
OpenMP only supports shared memory systems and MPI only 
supports distributed memory systems. Pluggable parallelisation 
supports both types of target platforms by “plugging” different 
transformations for each type of target platform. Our GridSeparate 
template supports grid environments. 
We performed additional measurements to assess the usability and 
code reuse of each approach. Table 5 presents the number of non 
commenting source statements (NCSS) for each benchmark 
measured with the JavaNCSS tool [19], version 29.50. The NCSS of 
parallelisation statements were manually collected, following a 
philosophy similar to the one implemented by the tool. OpenMP 
data is based on the JGF JOMP implementation, where OpenMP 
directives are specified as Java comments that are not considered by 
the NCSS tool. In that case we counted each OpenMP directive as 
one statement. 

Table 5. NCSS of various parallelisation approaches 

Base 
code JOMP MPI Java PP 

Application 

N
CS

S 

N
CS

S 

G
ro

w
 

N
CS

S 

G
ro

w
 

N
CS

S 

G
ro

w
 

Crypt 190 193 2% 242 27% 217 14%

LUFact 239 240 0% 328 37% 262 10%

Series 70 71 1% 115 64% 79 13%

SOR 56 72 29% 155 176% 110 96%

SparseMatmult 60 100 67% 109 82% 74 23%

MD 261 -1 - 283 8% 271 4%

RayTracer 240 240 0% 273 14% 259 8%

The OpenMP parallelisation (using JOMP) usually results in a small 
increase due to OpenMP directives. There are two exceptions: the 
SOR and the SparseMatMult. The increase in the former is due to 
the use of a different algorithm for all parallel versions (a version 
named red-black). The increase in the later is due to code to 
schedule loop iterations to threads. 
The MPI version leads to the highest number of statements on every 
cases. This is due to the statements to specify data partitioning and 
coordination among MPI processes. More problematic is that these 
statements are tangled with the basic functionality, making hard to 
reuse parallelisation code. 
The proposed approach always requires fewer statements than its 
MPI equivalent implementation. This is due to the reuse of the data 
partitioning strategy in the library and to the template based syntax. 
The lower count of SparseMatMult is due to the reuse of a default 
                                                                 
1  The JGF does not include the JOMP implementation of MD 

partitioning strategy, as the data partitioning, in this case, is simpler 
than the scheduling of loops to threads (the same can also be noticed 
in the MPI-based implementation, where this case is the one with 
less increase in statements, when compared with the JOMP 
implementation). The proposed approach tends to generate a higher 
number of statements than OpenMP, although it should be stressed 
that OpenMP does not support distributed memory systems (i.e., 
these numbers do not include the code required to specify data 
partition). 
Applying pluggable patterns to parallelise legacy code requires that 
the base code should be amenable for parallelisation. For instance, 
the sequential JGF version of the SOR does not use the red-black 
variant, so the parallelism that can be introduced is quite limited (in 
the case a complete re-write was required). Experience showed that 
in general some code re-factorings are required. The most common 
is to move a block of code to a method (M2M) to expose a new 
execution point and/or to name a block of code (as it was performed 
in LuFact) or to change the place where a certain operation is 
performed (MMC). These execution points are required to “plug” 
the parallelisation code into the right places. One less frequent re-
factoring is the exposition of context (e.g., the addition of a new 
parameter to a method (PDP), or to move a variable to an object 
field (M2OF). Since the parallelisation is performed “from outside 
to inside” the pluggable parallelisation must have access to context 
information. In traditional systems context information is “pushed” 
by calling a programming API (e.g., creating a Farm class). In the 
proposed approach this information must be “pulled” by the pattern. 
To preserve modularity, sometimes the required information must 
be explicitly exposed by making a re-factoring (e.g., it does not 
make sense to expose a local variable). Table 6 summarises the re-
factorings performed on each benchmark. We classify each re-
factoring as improving the program structure (G), degrading the 
structure (B) and neutral (N).  

Table 6. Description of re-factorings required to JGF 
benchmarks 

 Expose exec. point Expose context 

Crypt 2xM2M (G) - 

Series 2xM2M (B) - 

SOR M2M (G), MMC (G)  M2OF (G) 

LuFact 3xM2M (2G/B) - 

RayTracer M2M (G) 2xM2OF (G/B), 
PDP (G) 

SparceMatmult M2M (G), MMC (N) - 

MD M2M (G) - 
M2M – Move to Method; MMC - Move Method Call; M2OF – Move 
Variable to Object field, PDP – Processing Dependent of new Parameter 

The current implementation uses AspectJ code templates that are 
pre-processed by a tool. These issues and implementation details are 
out of the scope of this paper (some details can be found in [18]). 
Since we rely on AspectJ as an implementation tool, the supported 
execution points is a subset of the one provided by AspectJ. The 
implementation of the Partitioned template requires direct 
processing of the source code, since we needed to keep track of data 
allocation statements, identifying the size of data allocated to each 
object field. 
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5. RELATED WORK 
Recent work focuses on using Aspect Oriented Programming [10] 
(AOP), namely AspectJ [11], to separate parallelisation concerns 
from domain specific code [8][16][13], on the development of 
reusable aspects to implement well known patterns [7][4][17] and 
on extending AspectJ with a joinpoint model for loops [9]. AspectJ 
is an alterative to implement parallelisation concerns but it has three 
significant limitations: 1) it unnecessarily exposes AOP technology 
to the programmer (e.g., aspects, advices and pointcuts). 2) it lacks a 
suitable composition model, since aspects were designed to 
compose with some basic functionality and not to compose one with 
each other. Composability of abstractions is essential to develop 
complex patterns. 3) the most important is the lack of powerful 
constructs to implement static code transformations as it relies too 
much on a joinpoint model that captures dynamic events. There are 
no language constructs to address accesses to data arrays (e.g., there 
is no way to intercept accesses to specific array indexes to 
implement data transformations). This is essential to parallelise 
legacy code, where methods share data structures. Probably this is 
why authors of [8] have written “without completely re-writing 
LUFact, there is nothing more that can be done using AspectJ”. Our 
approach overcomes these issues by relying on a template based 
approach that hides AOP technology, providing a model to compose 
these templates and providing templates to explicitly address data 
distributions and moves. Separating transformations of control flow 
from data view makes it more manageable to plug parallelisation 
into legacy code as in the LUFact. 
Java-based skeleton approaches [5][6] are an object-oriented 
alternative to pluggable parallelisation. These systems provide a set 
of high-level patterns to implement common parallelisation 
strategies. Parallelisation is performed “from inside to outside” 
resulting in invasive and non-reversible changes to the base code. 
This results in a weak support for legacy code and scientific codes 
become dependent on a specific parallelisation strategy. As a 
consequence skeleton systems do not promote a so clear separation 
between domain-specific code and parallelisation issues. Moreover, 
there is no support for “sequential like” style: programmers build 
parallel applications by composing provided skeletons. The 
proposed approach follows a different philosophy: domain 
specialists develop their code in a traditional manner and specialists 
in parallel computing work on pluggable parallelisation issues that 
enable codes to take advantage of parallel systems. 

6. CONCLUSION 
This paper proposes an approach to develop parallel applications by 
plugging transformations into “sequential like” code. Code 
transformations are specified through templates that can be 
composed to implement more complex patterns. The approach 
promotes the separation of the control from the data view through 
the use of a specific set of templates for each purpose. 
This approach is able to support a “sequential like” style of 
programming and to support parallelisation of legacy code by 
plugging parallelisation issues, requiring fewer changes than 
competitive approaches. In cases where code re-factorings are 
necessary, scientific code remains “sequential like” (e.g., domain 
specific code does not become dependent of the parallelisation, 
being able to run when patterns are unplugged). 
Future work includes applying this technique to codes that require a 
larger amount of parallel code when moving from sequential to 

parallel (e.g., parallel sorting), to address other kinds of applications, 
such as pointer based structures (e.g., graphs) and to investigate how 
to provide contracts between domain specific code and pluggable 
parallelisation. 
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