
Design by Transformation: 
Encoding Domain Knowledge to Derive 

Optimized Program Architectures
Rui C. Gonçalves

Universidade do Minho

Universidad Jaume I, November 2012



Context and Motivation

• Complexity of hardware platforms is increasing
• Burden of improving software has moved from hardware 

manufacturers to developers

• Development of efficient software is a complex task
• Requires deep knowledge of the application domain and 

target hardware platform
• Tedious, time-consuming, and error-prone task
• Non-experts cannot reproduce, or even understand the 

development process
• Knowledge used to optimize programs is not reusable



Design by Transformation (DxT)
• Encode domain knowledge as transformations

• Transform models to map high-level specifications to efficient 
implementations

• Make domain knowledge reusable
• Enable automation

• Specify interfaces of domain operations and their 
implementations

• Specify domain-specific optimizations

• High-level representation of knowledge that makes it more 
understandable by non-experts

• Requires regular and mature domains of application



ReFlO Tool

• MDE tool for modeling application domains and synthesize 
efficient program architectures

• Modeling application domains
• Specify interfaces, algorithms (pipe-and-filter implementations), 

primitives (code implementations)
• Specify interfaces, primitives and algorithms propagation functions 

(used to model properties propagation functions, preconditions)

• Synthesize efficient program architectures
• Refine and optimize an initial high-level architecture, to obtain an 

efficient architecture
• Obtain the properties of the architecture (e.g., cost) to evaluate its 

quality



Modeling the Domain



Interfaces

• To specify the interface for an operation, we create an 
interface box

• Interface boxes have
• Name, input/output ports, and additional parameters

• Ports have name and data type
• Additional parameters are inputs that are not shown as 

ports

• Properties propagation functions



Algorithms

• Specify how an interface can be implemented
• Composes interfaces, using connectors to create a pipe-

and-filter graph

• Algorithm boxes have
• Name, input/output ports, and additional parameters
• Properties propagation functions



Primitives

• Specify the code implementations available for an 
interface

• Primitive boxes have
• Name, input/output ports, and additional parameters
• Properties propagation functions



DxT Domain Model
• Pairs interfaces with their implementations 

• An interface may be implemented by an algorithm or a 
primitive 

• Pairs form rewrite rules, that define valid replacements for 
interfaces (module preconditions)



DxT Domain Models

• Rewrite rules also specify how to optimize inefficient 
compositions of boxes



Additional Parameters

• Some inputs represent data that flows through the 
diagram boxes (e.g. streams in databases, matrices 
in BLAS)
• Called Essential Parameters

• Other inputs are just constants, or copied from parent 
box (e.g. attribute used as key when sorting a stream, 
transposition attributes in BLAS)
• Called Additional Parameters
• Not shown in graphical representations



Propagation Functions



Propagation Functions

• Propagation Functions allow to associate behavior 
with boxes, to later animate models
• Extract info (or properties) from architectures

• Example: associating to each box how it affects the 
data sizes (a propagation function), we will be able to 
later predict the data sizes of an architecture outputs

• Similar ideas may be used to compute costs or 
perform type checking, for example



Propagation Functions

• Providing code for each box allows us to generate 
code for any architecture and execute it

• Providing properties propagation functions for each 
box allows us to animate an architecture and extract 
properties from it

• Several propagation functions may be executed in 
sequence
• E.g.: to compute costs, we may first have to compute data 

sizes

• Specified in Java



Preconditions

• Interfaces, primitives and algorithms have 
preconditions

• Preconditions restrict the architectures where a box 
can be used
• Boolean-valued function of properties of inputs and 

additional parameters

• Preconditions are defined using propagation functions 



Preconditions

• do_nothing is a valid implementation for SORT when 
the input stream is already sorted



Propagation Functions and 
Preconditions

• SORT: output is always sorted

• SPLIT: outputs are sorted iff input is sorted

• do_nothing (precondition): if input is not sorted throw an error

public void compute() {
setOutputProperty("A", "IsSorted", true);

}

public void compute() {
Boolean inA = getInputProperty("A", "IsSorted");
setOutputProperty("A1", "IsSorted", inA);
setOutputProperty("A2", "IsSorted", inA);

}

public void compute() {
Boolean inA = getInputProperty("A", "IsSorted");
if(!inA) addError("Input is not sorted!");

}



Program Architecture 
Transformation/Synthesis



Initial Architecture

• Initial architecture is represented by an architecture 
box (similar to an algorithm box), which specifies an 
implementation of the program to optimize

• To use properties, we must provide the properties of 
program inputs/outputs, that ReFlO will propagate
• Properties may be just strings denoting variables



Refinements

• Replace an interface with one of its implementations

• Implementation preconditions (if any provided) are 
tested to build the list of possible implementations

• Flatten transformation may then be used to remove 
the algorithm boundaries



Project Sort Architecture



Project Sort Architecture



Project Sort Architecture



Project Sort Architecture

• The removal of the modular boundaries exposes 
inefficiencies



Optimizing Abstractions

• Aggregates a set of boxes, that are composed as an 
algorithm

• Preconditions are tested to ensure that architecture 
remains correct after the transformation

• Operation Find Patterns automatically identifies the 
sets of boxes that can be abstracted



Project Sort Architecture



Project Sort Architecture



Project Sort Architecture



Project Sort Architecture



Project Sort Architecture



Running Propagation 
Functions

• At any point during the synthesis process, we can run 
propagation functions
• Just select the architecture, and enter the propagation 

functions to run

• Allows us to keep track of the evolution of costs (or 
other quality attributes) of the architectures



Other Features of ReFlO

• Export DxT Domain Models to HTML documentation
• Requires the user to document the model elements 

(boxes, ports)

• Export DxT Domain Models to external tool (DxTer), 
that automates the search for the best implementation
• Some code needs to be manually provided as model 

annotations (e.g., preconditions)



Summary

• Approach/framework to encode (reusable) domain 
knowledge using a pipe-and-filter notation
• Operations and their implementations
• Optimizations

• Make domain knowledge accessible by non-experts

• Transformation system for pipe-and-filter graphs to 
synthesize program architectures
• Incrementally build optimized architectures
• Enable automation

• Animate architectures, and compute properties about them



Thank You!
• Some references:

• http://www.cs.utexas.edu/users/schwartz/DxT/
• Taylor Riché, Don Batory, Rui Gonçalves, Bryan Marker. Architecture 

Design by Transformation. UT-CS Technical Report TR-10-39, 2010.
• Taylor Riché, Rui Gonçalves, Bryan Marker, Don Batory. Pushouts in 

Software Architecture Design. Generative Programming and 
Component Engineering 2012.

• Bryan Marker, Jack Poulson, Don Batory, and Robert van de Geign. 
Designing Linear Algebra Algorithms by Transformation: Mechanizing 
the Expert Developer. International Workshop on Automatic 
Performance Tuning 2012.

• Questions?


