
CumuloNimbo:
A Cloud Scalable SQL Database

Rui Carlos Gonçalves

HASLab, INESC TEC & U. Minho

Porto Linux, 2016

RoadMap

2

› Background Research

› Scalable Transaction Processing

› Scalable Analytics

Research

3
These projects received funding from the European Union's Seventh Framework Programme for research, technological
development and demonstration under grant agreements no 257993, 611068 and 619606.

Yousuf Ahmad Ainhoa Azqueta Ivan Brondino Fábio Coelho

Francisco Cruz Bettina Kemme Rui Gonçalves Ricardo Jimenez

Miguel Matos Rui Oliveira Marta Patiño José Pereira Ricardo Vilaça

Background

4

› Big Data: Explosion of data being generated and stored
every day

› Holds valuable knowledge for organizations' operation

› Opportunity to improve efficiency

› New challenges to store and process massive amounts
of data

Scalable Transaction Processing

5

Scalable Transaction Processing

5

› To offer the classical ACID properties with useful isolation
levels, current clustered databases scale poorly both in
terms of performance and efficiency

Scalable Transaction Processing

5

› To offer the classical ACID properties with useful isolation
levels, current clustered databases scale poorly both in
terms of performance and efficiency

› To scale, current systems need to sacrifice atomicity,
consistency and overall ease of use

Scalable Transaction Processing

5

› To offer the classical ACID properties with useful isolation
levels, current clustered databases scale poorly both in
terms of performance and efficiency

› To scale, current systems need to sacrifice atomicity,
consistency and overall ease of use

› The Big Data challenge to current clustered databases is
to allow analytical processing over the freshest data

Scalable Transaction Processing

5

› To offer the classical ACID properties with useful isolation
levels, current clustered databases scale poorly both in
terms of performance and efficiency

› To scale, current systems need to sacrifice atomicity,
consistency and overall ease of use

› The Big Data challenge to current clustered databases is
to allow analytical processing over the freshest data

› Requires Hybrid Transactional and Analytical Processing -
simultaneous transactional and analytical workloads

CumuloNimbo

6

CumuloNimbo

6

› CumuloNimbo is a framework for multi-tier applications
that provides ultra-scalable and fault-tolerant processing
of OLTP and OLAP workloads

CumuloNimbo

6

› CumuloNimbo is a framework for multi-tier applications
that provides ultra-scalable and fault-tolerant processing
of OLTP and OLAP workloads

› It provides a standard SQL interface and full ACID
transactional support without resorting to sharding

CumuloNimbo

6

› CumuloNimbo is a framework for multi-tier applications
that provides ultra-scalable and fault-tolerant processing
of OLTP and OLAP workloads

› It provides a standard SQL interface and full ACID
transactional support without resorting to sharding

› Data is persisted in a distributed fault-tolerant data store

CumuloNimbo

6

› CumuloNimbo is a framework for multi-tier applications
that provides ultra-scalable and fault-tolerant processing
of OLTP and OLAP workloads

› It provides a standard SQL interface and full ACID
transactional support without resorting to sharding

› Data is persisted in a distributed fault-tolerant data store

› Scalability is achieved by distributing request execution
and transaction control across many compute nodes

Architecture

7

The CumuloNimbo system consists of multiple layers each of them having a specific
functionality. In order to achieve the desired throughput, each layer can be scaled
independently by adding more servers. Instances of different layers might be collocated to
improve response time performance.

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

Architecture

8

The Query Engine layer, based on Apache Derby query engine, provides the standard
relational interface (SQL) including the transaction commands (commit, abort, and begin).
The query layer itself is responsible for planning, optimizing and executing queries.
However, it does not perform transaction management nor is it responsible for data
storage.

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

Architecture

9

The NoSQL Data Store layer uses an advanced data store that is designed for inherent
scalability in terms of data size and processing requirements. Our system is based on
HBase, an elastic key-value store.

Architecture

10

The NoSQL Data Store sits on top of the Hadoop Distributed File System that provides
persistent and fault-tolerant data storage. The NoSQL Data Store tables, as well as its
write-ahead log, are persisted in HDFS.

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

Architecture

11

The Transaction Management is handled in a holistic manner providing full ACID
properties across the entire stack.

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

Architecture

12

The Platform Management Framework takes care of tasks such as deployment,
monitoring, dynamic load balancing and elasticity. Each instance on each layer has a
monitor collecting data about resource usage and performance metrics that are reported
to a central monitor.

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLTP

13

Scalable Transaction Processing

14

› Snapshot Isolation level

› Each transaction reads the data from a snapshot that
represents all committed values at the start time of a
transaction

› Conflicts are detected on updates: Whenever two
transactions are concurrent (neither commits before the
other starts), and they want to write a common data
item, one of them has to abort

› Snapshot isolation requires a multi-version system
providing snapshot read and snapshot write properties

Scalable Transaction Processing

15

Transaction execution
under snapshot isolation in
a centralized system

TS=1
StartTxn

Txn Mng Query Engine Data Store

Write(x, 27)

Read(x)

x:= 27

Î27

Read(y)

Commit

TS=2

TS++

Scalable Transaction Processing

16

Query&Engine

Data&Store

Tx Management

› Naive scale up approach

› Limitation 1: Serial and Atomic Commit Processing
Making commit processing appear as a single atomic
action that is spread across multiple nodes becomes
extremely expensive in terms of the time it takes to
complete the action, as well as the negative impact it
has on concurrency

Scalable Transaction Processing

17

› Naive scale up approach

› Limitation 2: Monolithic Transactional Processing
The global transaction management component can
easily become a bottleneck, performing many different
tasks and connecting to a large number of other
components.

Query&Engine

Data&Store

Tx Management

Scalable Transaction Processing

18

› Naive scale up approach

› Limitation 3: Synchronous Communication
Transaction execution is prolonged by including many
synchronous message exchanges. For each write
operation, the transaction first checks for conflicts at the
transaction manager, and then writes the changes to the
data store. Furthermore, the start and commit of the
transaction require additional message rounds with the
transaction manager and/or the data store.

Query&Engine

Data&Store

Tx Management

Scalable Transaction Processing

19

› Naive scale up approach

› Limitation 4: Message Overhead
At large transaction rates all components have to handle
a large amount of messages which can quickly become
a major overhead, for instance, a round-trip message
per updated item.

Query&Engine

Data&Store

Tx Management

The CumuloNimbo Breakthrough

20

Untangle and scale out the ACID properties independently

The CumuloNimbo Breakthrough

21

Untangle and scale out the ACID properties independently

The CumuloNimbo Breakthrough

21

Untangle and scale out the ACID properties independently

Loggers

Conflict
Managers

Snapshot Server

Commit Sequencer

Local Tx
Managers

Principles of the Approach

22

› Decoupling Update Visibility and Atomic Commit

› Proactive Timestamp Management

› Parallelization and Distribution

› Asynchronous Messaging and Batching

Decoupling Update Visibility and Atomic Commit

23

TS=1StartTxn

LoggerLocal0Tx Manager

GetStartTS()
1

Data0Store

Commit GetCommitTS()

2
TS++

Log0WriteSet

Durable

Write0WriteSet

Readable

Snapshot
Server

Commit
Sequencer

TS=2

Reply0to
Client

Distinguish Snapshot
Timestamp from Commit
Timestamp.

Updates to the Data
Store are now outside of
the response path.

Decoupling Update Visibility and Atomic Commit

24

The Snapshot server keeps
track of the most recent
snapshot that is consistent.

Its TS should be such that there
is no previous Commit TS that
a) is not yet readable or b) has
been discarded.

This way, transactions can
commit in parallel and
consistency be preserved.

Keeps track of and
reports most

recent consistent
TS

Gets
reports of
discarded

TSs

Gets reports of
durable &

readable TSs

Snapshot Server

Decoupling Update Visibility and Atomic Commit

25

TIMESTAMP 11
TIMESTAMP 15

TIMESTAMP 12
TIMESTAMP 14

TIMESTAMP 13

Time

Sequence of timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server

TIMESTAMP 11
TIMESTAMP 12

TIMESTAMP 12
TIMESTAMP 15

TIMESTAMP 11

11 15 12 14 13

11 11 12 12 15

Coordination between Snapshot and Commit servers

Proactive Timestamp Management

26

Two independent timestamp
services

Timestamp management can
become ultimate bottlenecks

Proactive timestamp serving
to the rescue

TS=1StartTxn

LoggerLocal0Tx Manager

GetStartTS()
1

Data0Store

Commit GetCommitTS()

2
TS++

Log0WriteSet

Durable

Write0WriteSet

Readable

Snapshot
Server

Commit
Sequencer

TS=2

Reply0to
Client

Proactive Timestamp Management

27

Commit Sequencer

Once a transaction enters the
commit phase it is guaranteed that it
does not conflict with any other
transaction

The commit timestamp is only
needed to tag the updates with that
commit timestamp

It does not matter which timestamp
each transaction gets!

10ms

10ms

Local*Txn Mng Commit*Server

3

0*1*2

3*4*5*

6*7**

2

T1 T2

0 1 2

T1 T2 T3

0 1 2 3 4 5X

B1

B2

B3

1

10ms

Parallelization and Distribution

28

All CumuloNimbo architecture is distributed and most
components can be run in parallel

Query
Engine

+
Local0
TM

Query
Engine

+
Local0
TM

Logger

Conflict0
Mng

Data
Store

Logger

Data
StoreData
Store

Query
Engine

+
Local0
TM

Commit0
Server

Snapshot0
Server

Conflict0
MngConflict0

Mng Logger

Snapshot0
Server

Transaction0
Start

Conflic
t?

Durable&R
eadable (C

ommitTS)
GetStartTS

Transaction0
Execution

Transaction0Commit

Transaction0
Serialization

Make0Updates0
Durable0(log)

Make0Updates0
Readable

Data
Store

Data
Store
Data
Store

Report0Readability
&0Durability

Report0
Visibility

StartTS

Re
ad
(S
ta
rtT
S)

Log

GetCom
m
itTS

Write(data,0CommitTS)

Write(data)

Readable

Durable

Parallelization and Distribution

29

Local Transaction Managers

Manage the transactions life cycle
Can have parallel instances
Collocated with Query Engines

Query
Engine

+
Local0
TM

Query
Engine

+
Local0
TM

Logger

Conflict0
Mng

Data
Store

Logger

Data
StoreData
Store

Query
Engine

+
Local0
TM

Commit0
Server

Snapshot0
Server

Conflict0
MngConflict0

Mng Logger

Snapshot0
Server

Transaction0
Start

Conflic
t?

Durable&R
eadable (C

ommitTS)
GetStartTS

Transaction0
Execution

Transaction0Commit

Transaction0
Serialization

Make0Updates0
Durable0(log)

Make0Updates0
Readable

Data
Store

Data
Store
Data
Store

Report0Readability
&0Durability

Report0
Visibility

StartTS

Re
ad
(S
ta
rtT
S)

Log

GetCom
m
itTS

Write(data,0CommitTS)

Write(data)

Readable

Durable

Parallelization and Distribution

30

Conflict Managers

Each CM handles a disjoint subset of data record keys
Can have parallel instances

Query
Engine

+
Local0
TM

Query
Engine

+
Local0
TM

Logger

Conflict0
Mng

Data
Store

Logger

Data
StoreData
Store

Query
Engine

+
Local0
TM

Commit0
Server

Snapshot0
Server

Conflict0
MngConflict0

Mng Logger

Snapshot0
Server

Transaction0
Start

Conflic
t?

Durable&R
eadable (C

ommitTS)
GetStartTS

Transaction0
Execution

Transaction0Commit

Transaction0
Serialization

Make0Updates0
Durable0(log)

Make0Updates0
Readable

Data
Store

Data
Store
Data
Store

Report0Readability
&0Durability

Report0
Visibility

StartTS

Re
ad
(S
ta
rtT
S)

Log

GetCom
m
itTS

Write(data,0CommitTS)

Write(data)

Readable

Durable

Parallelization and Distribution

31

Loggers

Each Logger handles a fraction of the log records
Can have parallel and replicated instances
Independent; do not coordinate with each other

Query
Engine

+
Local0
TM

Query
Engine

+
Local0
TM

Logger

Conflict0
Mng

Data
Store

Logger

Data
StoreData
Store

Query
Engine

+
Local0
TM

Commit0
Server

Snapshot0
Server

Conflict0
MngConflict0

Mng Logger

Snapshot0
Server

Transaction0
Start

Conflic
t?

Durable&R
eadable (C

ommitTS)
GetStartTS

Transaction0
Execution

Transaction0Commit

Transaction0
Serialization

Make0Updates0
Durable0(log)

Make0Updates0
Readable

Data
Store

Data
Store
Data
Store

Report0Readability
&0Durability

Report0
Visibility

StartTS

Re
ad
(S
ta
rtT
S)

Log

GetCom
m
itTS

Write(data,0CommitTS)

Write(data)

Readable

Durable

Asynchronous Messaging and Batching

32

› Conflict Managers

› Conflict checks are asynchronous: non-conflicting
transactions run faster vs. abort detection is delayed

› Conflict checks are batched

› On commit, outstanding conflict checks are synchronized

› Update propagation

› While read operations are synchronous, updates are
made asynchronously and batched per data store

Asynchronous Messaging and Batching

33

› The local transaction managers report periodically about
the number of committed update transactions per second

› The commit sequencer distributes batches of commit
timestamps to the local transaction managers

› The snapshot server gets periodically batches of
timestamps (both used and discarded) from local
transaction managers

› The snapshot server reports periodically to local
transaction managers the most current consistent
snapshot

OLAP

34

Copy Data (ETL)

Scalable Analytics

35

Current Data Warehousing solutions rely in ETLs to update
data.

OLAPOLTP

Transactional DB
Consistent Updates

Data Warehouse
Fast Analytical Queries

Cost of ETLs 80% of Business Analytics !

The Big Data challenge to current clustered databases is to
allow analytical processing over the freshest data.

Scalable Analytics

OLAPOLTP

Transactional DB
Consistent Updates

Data Warehouse
Fast Analytical Queries

36

Analytical queries over the transactional DB:

Real-Time Analytics (No ETLs)

HTAP -80% cost in Business Analytics !

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLTP Architecture

37

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLTP Architecture

37

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLTP Architecture

37

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

CumuloNimbo can leverage data locality, when query engines, HBase and HDFS are co-
located on the same physical machine.

OLAP Architecture

38

Application Server (JBoss+Hibernate)

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Conflict
Managers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Holistic
Transaction

Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

NoSQL&Data&Store&(HBase)

Application*Server

CumuloNimbo can leverage data locality, when query engines, HBase and HDFS are co-
located on the same physical machine.

Parallel Coordination

39

› Maintains a set of symmetric workers for a user connection

› Initializes a communication middleware for efficient intra-
query row exchange among workers

› Spawns a parallel query plan for all workers to execute

› Schedules disjoint subsets of data to scan to the different
workers

› Collects results and errors

40

Parallel Query Plans

Project
Restrict

Grouped
Agg.

Scan

Project
Restrict select a, avg(b) from t

where c > 0
group by a
having avg(b) > 0

stateless operator

stateful operator

Parallel Query Plans

41

Project
Restrict

Grouped
Agg.

Shard
Scan

Project
Restrict

Project
Restrict

Grouped
Agg.

Shard
Scan

Project
Restrict

each6worker
scans6a6shard

partial (incorrect)6results
for6all groups

Parallel Query Plans

42

Project
Restrict

Grouped
Agg.

Shard
Scan

Project
Restrict

Project
Restrict

Grouped
Agg.

Shard
Scan

Project
Restrict

Shuffle Shuffle

Shuffle Shuffle

full8results8for
part8of8the8groups

Target:
0

Target:
hash(a) mod #workers

Communication Middleware

43

› Provides efficient row exchange for shuffle operators

› Supports hash-based shuffling

› Asynchronous and multi-stage

› Multiple implementations available (e.g. sockets, RDMA
Verbs)

Conclusions

44

› CumuloNimbo platform offers distributed and highly
scalable SQL processing, with full ACID properties

› OLTP components iterated over 5 years: beta ready

› OLAP has a fully working implementation

› Ongoing work

› XA

› HTAP (OLAP+OLTP)

45

Thank you for your attention

