An RDMA Middleware tfor Multi-stage

Asynchronous Shuftling in Analytical
Processing

Rui C. Gongalves', José Pereiral, Ricardo Jiménez-Peris?

1INESC TEC & U. Minho
2Univ. Politécnica de Madrid & LeanXcale

Distributed Applications and Interoperable Systems
June 2016




Context

> Big Data: Explosion of data being generated

and stored every day

» Holds valuable knowledge for organizations'
operation

» Opportunity to improve their efficiency

> New challenges to store and process massive
amounts of data



Context

» Emergence of new solutions for large scale
data processing, as alternatives to traditional

Relational Database Management Systems

> NoSQL database systems
> MapReduce programming model
> Stream processing frameworks

> New solutions that offer SQL-like interfaces

> Hive
> Impala

‘ . ‘
x HIGH-ASSURANCE
SOFTWARE LABORATORY



Shuftling

» Shuffling is a key concept in multiple solutions
> Provides distribution of data for parallel processing,
possibly aggregating related items
» Different shuffling approaches

> Push-based vs pull-based
> Synchronous vs asynchronous
» Hash code vs random

> Requires distributed coordination
» Critical for systems performance



Shuftling

> Shuffling is a key concept in multiple solutions

> Provides distribution of data for parallel processing,
possibly aggregating related items

» Different shuffling approaches
> Push-based vs pull-based

> Synchronous vs asynchronous
> Hash code vs random




RDMA Protocols

> Low latency, high throughput
communications

> Direct application access to network
hardware

> Zero—-copy communications

> Multiple RDMA technologies

> Software implementations also available: e.q.
Soft-iWARP and Soft-RoCE

‘ . ‘
x HIGH-ASSURANCE
SOFTWARE LABORATORY



RDMA Verbs

> Asynchronous APl to use RDMA protocols
> Requests are queued, and completion events may
be generated when requests are completed
» Two types of communication semantics:

> Memory semantics (one-sided read/write
operations)

> Channel semantics (two-sided send/receive
operations)

> Predefined memory locations

> Requires redesigning applications currently using
: : @
socket-based communications Of® s



Shuftling tor Analytical Processing



Shuftling tor Analytical Processing

> Shuffling implementation to
support analytical workloads on a
Java distributed query engine (SQL)

> Parallelization of stateful operators
requires shuffling to group related rows



Shuftling tor Analytical Processing

select *
from a 1inner join b

> Shuffling implementation to on a.x = b.x

support analytical workloads on a
Java distributed query engine (SQL)
> Parallelization of stateful operators

¥
e,@é

requires shuffling to group related rows

matching

_keys

¥ q

<>

AL

> O % %
©

(T ‘
o

=



Shuftling tor Analytical Processing

select *
from a 1inner join b

> Shuffling implementation to on a.x = b.x

support analytical workloads on a

Java distributed query engine (SQL)
> Parallelization of stateful operators
requires shuffling to group related rows
> Multi-stage, to allow multiple shuffling
steps r:mrf
> Asynchronous, to allow tasks to <&
execute in parallel at different steps

¥
e,@é

AL

2 @ @ %
@)

sk

P

S {7

ssIr

£ 1t



DQE Analytical Processing

Architecture

> Workers execute the operators of the query plan,
which requires fetching rows from child operators

> When fetching rows from Shuffle operators:
> It may return a row received from other worker

> If there is no received row, it fetches a row from its

child operator

> The row fetched may be returned or shuffled

, Worker

, Worker

DQE Instance

Local |||
| Data J||

DQE Instance

, Worker

Worker

Local
 Data

DQE Instance

, Worker

| Worker

Local
| Data

L, Network 4

HIGH-ASSURANCE



Asynchronous Shuftling

> Push-based asynchronous shuffling

> Rows are sent as soon as they are processed by
the Shuffle operator

> Workers maintain Shuffle Queues, which receive
remote rows and store them until they are
consumed

DQE Instance DQE Instance DQE Instance
Worker Worker Worker
Shuffle Queues || Shuffle Queues || Shuffle Queues||
) Local ||| Local ) Local
- \Data - \Data - \Data
Worker Worker “es Worker
Shuffle Queues Shuffle Queues Shuffle Queues

L’, ‘ 4 @
Network 3

HIGH-ASSURANCE



Shuffle Queues

> Contain an incoming and an outgoing circular

buffer per each remote thread

» Outgoing buffers are used to serialize rows to send

> Incoming buffers are used to receive rows and store it
until they are consumed

> Rows from local workers are put on a dynamic queue

> Communication middleware transfers data from
an outgoing buffer to the matching incoming

b u 'ﬁ:e I DQE Instance
, Worker p——
Shuffle Queues ,+* | 1local 0ODODO-:
‘ Gocal|| -~ |7 in oo,
Worker o2 lout. T
Shuffle Queues :— in. CCCCICLLITIT)
. A | :out.|||||||||||||: .
- N . &(‘ HASLab
e SOFTWARE LABORATORY




Communication Middleware

> Key functionalities required

> Ability to send (and queue) rows to remote
workers

> Ability to retrieve queued rows

> Ability to block a worker when there are no rows
to process (and to wake it up when new rows
become available)

> Ability to block a worker when the local outgoing
buffers are full (and to wake it up when space
becomes available)

‘ . ‘
x HIGH-ASSURANCE
SOFTWARE LABORATORY



RDMA Middleware

Overview

> RDMA Write operations to transfer data
» Send/Receive operations for notifications
> Dedicated network thread on each DQE

Instance

> Tracks requests' completion events
> Manages notifications



Workers

> When rows to shuffle become available:

> Serialize rows and post write requests, unless:
> Outgoing buffer is full (worker blocks)
> Remote incoming buffer is full (worker proceeds
with its operation)

> When polling rows from shuffle queues:

> Check for rows received in local queue

> If no row was available, poll incoming buffers
> When data is removed from buffers, notifies the
remote side, so that space released can be reused
» Block if shuffle queues are empty and child operator
has no more rows ’Y‘“AS”'



Network Thread

> In charge of operations that follow the
completion event of network operations

> After completion of write operations

> Notifies the remote side that data was written

> Releases space on outgoing buffers
> Wakes up workers blocked for writing



Network Thread

> After receiving notifications
> Maintains a queue of buffers with data available

based on write notifications (to avoid the need
of active polling)
> Wakes up workers blocked for reading

> Maintains the space available on remote buffers
based on read notifications (to determine

whether write requests can be performed)
> Post write requests for data on buffers (if worker was
unable to post a write request previously) ®



lmplementation Decisions

» Single connection between each pair of

machines
> Multiple workers share the same connection/
requests queue
> RDMA write (vs send/receive)
> Avoids the need of a rendezvous protocol
> Less CPU usage (remote side)



Optimizations

» Batch multiple rows/notifications before

transferring data

> Trades latency for reduced contention accessing
network resources
> Pre-initialized data structures
> Data structures initialized during creation of JDBC
connection (reused for multiple queries)
> Reduce overheads of JNI calls by using stateful
verbs methods provided by jVerbs library

7 ‘ . ‘
I x HIGH-ASSURANCE
SOFTWARE LABORATORY



Performance Evaluation
Synthetic Query Plan

40 38.66 Sockets
B RDMA

32

v 25.46 5354

m .

@ @ £ 24 22.15 22.05

)

C

§e)

)

3 16

Q

x

L

> 8 machines (Intel Core i3 CPU, 2 cores, 8GB RAM, 1 GigE)
> Query plan where each machine shuffles 5M integers twice

> RDMA middleware compared with a socket middleware
> RDMA middleware: execution time ~3.9x faster



Performance Evaluation
SQL Join Query

select ol _o_id, ol w_id, ol _d_id,

sum(ol_amount) as revenue, eg 1708417084 ockes

o_entry_d 160 MRDMA
from order_1line, orders, new_order, customer < 140
where o_entry_d > timestamp('2013-07-01 0.00.00"') £ 120

and c_id = o_c_id and c_w_id = o_w_id 5 100

and c d id = o_d_id and no_w_id = o_w_id 3 80

and no_d_id = o_d_id and no_o_id = o_id & 60 1654 42,69

and ol w _id = o_w_id and ol _d_id = o_d_id ﬁ 22762019 1717 1542 1652 1445 1722 1457

and ol _o_id = o_id and c_state like 'A%’ & ] ] — ]
group by ol_o_id, ol_w_id, 01 d_id, o_entry_d 1 8 16 32 64 %
having revenue > 80000.00 # workers

order by revenue desc, o_entry_d;

> Triple hash join with aggregation query
> Uses 8 shuffle operators
> RDMA middleware: execution time ~1.14x faster

HHHHHHHHHHHHHHHH



Performance Evaluation
SQL Aggregation Query

Sockets

select ol_number, sum(ol_quantity) as sum_qty, eg oeTE mRDMA
sum(ol_amount) as sum_amount, % 140
sum(ol_quantity) / count(x) as avg_qty, £ 120

sum(ol_amount) / count(x) as avg_amount,
count(x) as count_order

Execution ti
(0]
o

from order_1line o0 3311 3119

where gl_dilivegy_d > timestamp('2013-07-01 0:00:00"') ‘2‘2 . 1635 1468 1239 1196 1181 1113 1180 1128
group by ol_number ] — — ]
order by sum(ol_quantity) desc; v 1 8 16 32 64 96

# workers

> Aggregation query
» Uses 2 shuffle operators
> RDMA middleware: execution time around 1.06x faster

20 HIGH-ASSURANCE
SOFTWARE LABORATORY



Summary

> Leverage from RDMA to improve performance
of shuffling in large scale analytical processing

> Design an RDMA communication middleware to
support push-based asynchronous shuffling

> Improves time spent on communication
operations by 3.9x, when compared with a
sockets-based middleware

» Using an RDMA approach is beneficial even
when using software RDMA implementatim}%

2 I HIGH-ASSURANCE
SOFTWARE LABORATORY



