
An RDMA Middleware for Multi-stage
Asynchronous Shuffling in Analytical

Processing
Rui C. Gonçalves1, José Pereira1, Ricardo Jiménez-Peris2

1INESC TEC & U. Minho
2Univ. Politécnica de Madrid & LeanXcale

Distributed Applications and Interoperable Systems
June 2016

› Big Data: Explosion of data being generated
and stored every day
›Holds valuable knowledge for organizations'
operation

›Opportunity to improve their efficiency
›New challenges to store and process massive
amounts of data

Context

2

› Emergence of new solutions for large scale
data processing, as alternatives to traditional
Relational Database Management Systems
› NoSQL database systems
› MapReduce programming model
› Stream processing frameworks

› New solutions that offer SQL-like interfaces
› Hive
› Impala

Context

3

› Shuffling is a key concept in multiple solutions
› Provides distribution of data for parallel processing,

possibly aggregating related items
› Different shuffling approaches

› Push-based vs pull-based
› Synchronous vs asynchronous
› Hash code vs random

› Requires distributed coordination
› Critical for systems performance

Shuffling

4

› Shuffling is a key concept in multiple solutions
› Provides distribution of data for parallel processing,

possibly aggregating related items
› Different shuffling approaches

› Push-based vs pull-based
› Synchronous vs asynchronous
› Hash code vs random

› Requires distributed coordination
› Critical for systems performance

Shuffling

4

Leverage from RDMA
protocols to improve shuffling

› Low latency, high throughput
communications

› Direct application access to network
hardware

› Zero-copy communications
› Multiple RDMA technologies

› Software implementations also available: e.g.
Soft-iWARP and Soft-RoCE

RDMA Protocols

5

› Asynchronous API to use RDMA protocols
› Requests are queued, and completion events may

be generated when requests are completed
› Two types of communication semantics:

› Memory semantics (one-sided read/write
operations)

› Channel semantics (two-sided send/receive
operations)

› Predefined memory locations
› Requires redesigning applications currently using

socket-based communications

RDMA Verbs

6

Shuffling for Analytical Processing

7

› Shuffling implementation to
support analytical workloads on a
Java distributed query engine (SQL)
› Parallelization of stateful operators

requires shuffling to group related rows

Shuffling for Analytical Processing

7

› Shuffling implementation to
support analytical workloads on a
Java distributed query engine (SQL)
› Parallelization of stateful operators

requires shuffling to group related rows

Shuffling for Analytical Processing

7

select *
 from a inner join b
 on a.x = b.x

Shuffle

Hash

Shuffle

Hash
Join

Local
Scan

Shuffle

Local
Scan

matching
keys

› Shuffling implementation to
support analytical workloads on a
Java distributed query engine (SQL)
› Parallelization of stateful operators

requires shuffling to group related rows
› Multi-stage, to allow multiple shuffling

steps
› Asynchronous, to allow tasks to

execute in parallel at different steps

Shuffling for Analytical Processing

7

select *
 from a inner join b
 on a.x = b.x

Shuffle

Hash

Shuffle

Hash
Join

Local
Scan

Shuffle

Local
Scan

matching
keys

› Workers execute the operators of the query plan,
which requires fetching rows from child operators

› When fetching rows from Shuffle operators:
› It may return a row received from other worker
› If there is no received row, it fetches a row from its

child operator
› The row fetched may be returned or shuffled

DQE Analytical Processing
Architecture

8

...

DQE Instance

...

Worker

Worker

Local
Data

DQE Instance

...

Worker

Worker

Local
Data

DQE Instance

...

Worker

Worker

Local
Data

Network

› Push-based asynchronous shuffling
› Rows are sent as soon as they are processed by

the Shuffle operator
› Workers maintain Shuffle Queues, which receive

remote rows and store them until they are
consumed

Asynchronous Shuffling

9

...

DQE Instance

...

Worker

Worker

Local
Data

DQE Instance

...

Worker

Worker

Local
Data

DQE Instance

...

Worker

Worker

Local
Data

Network

Shuffle Queues

Shuffle Queues

Shuffle Queues

Shuffle Queues

Shuffle Queues

Shuffle Queues

DQE Instance

...

Worker

Worker

Local
Data

Shuffle Queues

Shuffle Queues

local

in.
out.

in.
out.

...

...

› Contain an incoming and an outgoing circular
buffer per each remote thread
› Outgoing buffers are used to serialize rows to send
› Incoming buffers are used to receive rows and store it

until they are consumed
› Rows from local workers are put on a dynamic queue

› Communication middleware transfers data from
an outgoing buffer to the matching incoming
buffer

Shuffle Queues

10

› Key functionalities required
› Ability to send (and queue) rows to remote

workers
› Ability to retrieve queued rows
› Ability to block a worker when there are no rows

to process (and to wake it up when new rows
become available)

› Ability to block a worker when the local outgoing
buffers are full (and to wake it up when space
becomes available)

Communication Middleware

11

› RDMA Write operations to transfer data
› Send/Receive operations for notifications
› Dedicated network thread on each DQE

instance
› Tracks requests' completion events
› Manages notifications

RDMA Middleware
Overview

12

› When rows to shuffle become available:
› Serialize rows and post write requests, unless:

› Outgoing buffer is full (worker blocks)
› Remote incoming buffer is full (worker proceeds

with its operation)
› When polling rows from shuffle queues:

› Check for rows received in local queue
› If no row was available, poll incoming buffers

› When data is removed from buffers, notifies the
remote side, so that space released can be reused

› Block if shuffle queues are empty and child operator
has no more rows

Workers

13

› In charge of operations that follow the
completion event of network operations

› After completion of write operations
› Notifies the remote side that data was written
› Releases space on outgoing buffers

› Wakes up workers blocked for writing

Network Thread

14

› After receiving notifications
› Maintains a queue of buffers with data available

based on write notifications (to avoid the need
of active polling)
› Wakes up workers blocked for reading

› Maintains the space available on remote buffers
based on read notifications (to determine
whether write requests can be performed)
› Post write requests for data on buffers (if worker was

unable to post a write request previously)

Network Thread

15

› Single connection between each pair of
machines
› Multiple workers share the same connection/

requests queue
› RDMA write (vs send/receive)
› Avoids the need of a rendezvous protocol
› Less CPU usage (remote side)

Implementation Decisions

16

› Batch multiple rows/notifications before
transferring data
› Trades latency for reduced contention accessing

network resources
› Pre-initialized data structures
› Data structures initialized during creation of JDBC

connection (reused for multiple queries)
› Reduce overheads of JNI calls by using stateful

verbs methods provided by jVerbs library

Optimizations

17

› 8 machines (Intel Core i3 CPU, 2 cores, 8GB RAM, 1 GigE)
› Query plan where each machine shuffles 5M integers twice
› RDMA middleware compared with a socket middleware

› RDMA middleware: execution time ~3.9x faster

Performance Evaluation
Synthetic Query Plan

18

Int
Generator

Shuffle

Shuffle

n := n * 3/2

Shuffle

Shuffle

n := n * 3/2

Int
Generator

38.66

25.46
22.15 22.05 23.54

7.42 5.97 5.65 5.81 5.91

0

8

16

24

32

40

8 16 32 48 64

Ex
ec
ut
io
n5
tim

e5
(s
)

#5workers

Sockets

RDMA

› Triple hash join with aggregation query
› Uses 8 shuffle operators

› RDMA middleware: execution time ~1.14x faster

Performance Evaluation
SQL Join Query

19

170.84

46.54

22.76 17.17 16.52 17.22

170.84

42.69

20.19 15.42 14.45 14.57

00
20
40
60
80

100
120
140
160
180
200

1 8 16 32 64 96

Ex
ec
ut
io
n5
tim

e5
(s
)

#5workers

Sockets

RDMA

select ol_o_id, ol_w_id, ol_d_id,
 sum(ol_amount) as revenue,
 o_entry_d
from order_line, orders, new_order, customer
where o_entry_d > timestamp('2013-07-01 0.00.00')
 and c_id = o_c_id and c_w_id = o_w_id
 and c_d_id = o_d_id and no_w_id = o_w_id
 and no_d_id = o_d_id and no_o_id = o_id
 and ol_w_id = o_w_id and ol_d_id = o_d_id
 and ol_o_id = o_id and c_state like 'A%'
group by ol_o_id, ol_w_id, ol_d_id, o_entry_d
having revenue > 80000.00
order by revenue desc, o_entry_d;

159.67

33.11
16.35 12.39 11.81 11.89

159.67

31.19
14.68 11.26 11.13 11.28

00
20
40
60
80

100
120
140
160
180
200

1 8 16 32 64 96

Ex
ec
ut
io
n5
tim

e5
(s
)

#5workers

Sockets

RDMA

› Aggregation query
› Uses 2 shuffle operators

› RDMA middleware: execution time around 1.06x faster

Performance Evaluation
SQL Aggregation Query

20

select ol_number, sum(ol_quantity) as sum_qty,
 sum(ol_amount) as sum_amount,
 sum(ol_quantity) / count(*) as avg_qty,
 sum(ol_amount) / count(*) as avg_amount,
 count(*) as count_order
from order_line
where ol_delivery_d > timestamp('2013-07-01 0:00:00')
group by ol_number
order by sum(ol_quantity) desc;

› Leverage from RDMA to improve performance
of shuffling in large scale analytical processing

› Design an RDMA communication middleware to
support push-based asynchronous shuffling

› Improves time spent on communication
operations by 3.9x, when compared with a
sockets-based middleware

› Using an RDMA approach is beneficial even
when using software RDMA implementations

Summary

21

